Hirota integrable dynamics: from quantum spin chains to AdS/CFT integrability Vladimir Kazakov (ENS, Paris) International Symposium Ahrenshoop “Recent.

Slides:



Advertisements
Similar presentations
Stokes Phenomena and Non-perturbative Completion in the multi-cut matrix models Hirotaka Irie (NTU) A collaboration with Chuan-Tsung Chan (THU) and Chi-Hsien.
Advertisements

Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin,
5.1 Real Vector Spaces.
Summing planar diagrams
Yerevan State University / Leibniz Universität Hannover Supersymmetry in Integrable Systems - SIS'10 International Workshop, August 2010, Yerevan,
On correlation functions and anomalous dimensions of planar N=4 SYM theory: twist-2 operators and BFKL Vladimir Kazakov (ENS,Paris) “CFT and Integrability”
The quark-antiquark potential in N=4 Super Yang Mills Juan Maldacena Based on: arXiv: , arXiv: , arXiv: N =4 super Yang Mills,
Chanyong Park 35 th Johns Hopkins Workshop ( Budapest, June 2011 ) Based on Phys. Rev. D 83, (2011) arXiv : arXiv :
Semi-Classical strings as probes of AdS/CFT M. Kruczenski Purdue University Based on: arXiv: R. Roiban, A. Tirziu, A. Tseytlin, M.K. arXiv:
Spin Chain in Gauge Theory and Holography Yong-Shi Wu Department of Physics, University of Utah, Center for Advanced Study, Tsinghua University, and Shanghai.
Spiky strings, light-like Wilson loops and a pp-wave anomaly M. Kruczenski Purdue University Based on: arXiv: arXiv: A. Tseytlin, M.K.
Strings in AdS pp-waves M. Kruczenski Purdue University Based on: arXiv: arXiv: A. Tseytlin, M.K. arXiv: arXiv: R. Ishizeki,
Large spin operators in string/gauge theory duality M. Kruczenski Purdue University Based on: arXiv: (L. Freyhult, A. Tirziu, M.K.) Miami 2009.
Spiky Strings in the SL(2) Bethe Ansatz
Planar diagrams in light-cone gauge hep-th/ M. Kruczenski Purdue University Based on:
A window into 4D integrability: the exact spectrum of N = 4 SYM from Y-system Vladimir Kazakov (ENS,Paris) “Great Lakes Strings” Conference 2011 Chicago.
Spiky Strings and Giant Magnons on S 5 M. Kruczenski Purdue University Based on: hep-th/ (Russo, Tseytlin, M.K.)
Strings in AdS pp-waves M. Kruczenski Purdue University Based on: arXiv: A. Tseytlin, M.K. arXiv: R. Ishizeki, A. Tirziu, M.K. + work.
String / gauge theory duality and ferromagnetic spin chains Rob Myers, David Mateos, David Winters Arkady Tseytlin, Anton Ryzhov M. Kruczenski Princeton.
Status of Spectral Problem in planar N=4 SYM Vladimir Kazakov (ENS,Paris) Collaborations with: Nikolay Gromov (King’s College, London) Sebastien Leurent.
Nikolay Gromov Based on N. G., V. Kazakov, S. Leurent, D. Volin , N. G., F. Levkovich-Maslyuk, G. Sizov, S. Valatka A. Cavaglia,
Integrability and Bethe Ansatz in the AdS/CFT correspondence Konstantin Zarembo (Uppsala U.) Nordic Network Meeting Helsinki, Thanks to: Niklas.
Nikolay Gromov Based on works with V.Kazakov, S.Leurent, D.Volin F. Levkovich-Maslyuk, G. Sizov Nikolay Gromov Based on works with.
Bethe Ansatz and Integrability in AdS/CFT correspondence Konstantin Zarembo (Uppsala U.) “Constituents, Fundamental Forces and Symmetries of the Universe”,
Integrability in Superconformal Chern-Simons Theories Konstantin Zarembo Ecole Normale Supérieure “Symposium on Theoretical and Mathematical Physics”,
Hirota Dynamics of Quantum Integrability Vladimir Kazakov (ENS, Paris) “ Facets of Integrability: Random Patterns, Stochastic Processes, Hydrodynamics,
Solving the spectral AdS/CFT Y-system Vladimir Kazakov (ENS,Paris) “ Maths of Gauge and String Theory” London, 5/05/2012 Collaborations with Gromov, Leurent,
Exploring TBA in the mirror AdS 5 × S 5 Ryo Suzuki School of Mathematics, Trinity College Dublin Ryo Suzuki School of Mathematics, Trinity College Dublin.
Exact Results for perturbative partition functions of theories with SU(2|4) symmetry Shinji Shimasaki (Kyoto University) JHEP1302, 148 (2013) (arXiv: [hep-th])
Integrable Models and Applications Florence, September 2003 G. Morandi F. Ortolani E. Ercolessi C. Degli Esposti Boschi F. Anfuso S. Pasini P. Pieri.
Integrability of N=6 Super Chern-Simons Theories Dongsu Bak University of Seoul with S. J. Rey and D. Kang (KIAS, 9/24/2008) TexPoint fonts used in EMF.
Nikolay Gromov Based on N. G., V. Kazakov, S. Leurent, D. Volin , N. G., F. Levkovich-Maslyuk, G. Sizov, S. Valatka A. Cavaglia,
Gauge Theory, Superstrings and Supermagnets Volker Schomerus SYSY Goettingen 2012.
Supersymmetric Bethe Ansatz and Baxter Equations from Discrete Hirota Dynamics V. Kazakov (ENS, Paris) NBI, Copenhagen 18/04/07 with A.Sorin and A.Zabrodin,
Hirota Dynamics of Quantum Integrability Vladimir Kazakov (ENS, Paris) “Round Table: Frontiers of Mathematical Physics” Dubna, December 16-18, 2012 Collaborations.
Q-operators and discrete Hirota dynamics for spin chains and sigma models Vladimir Kazakov (ENS,Paris) Workshop, “`From sigma models to 4D CFT ” DESY,
1 Integrability in AdS^5 x S_5 string theory: general 1-loop results Based on [N.G., Pedro Vieira] hep-th/ , hep-th/ , to appear.
Cambridge, Dec 10th, 2007 Thomas Klose Princeton Center for Theoretical Physics based on work with Valentina Giangreco Puletti and Olof Ohlson Sax: hep-th/
II Russian-Spanish Congress “Particle and Nuclear Physics at all scales and Cosmology”, Saint Petersburg, Oct. 4, 2013 RECENT ADVANCES IN THE BOTTOM-UP.
Minkyoo Kim (Wigner Research Centre for Physics) 9th, September, 2013 Seminar in KIAS.
Dressing factor in integrable AdS/CFT system Dmytro Volin Annecy, 15 April 2010 x x x x x x x x x x x x 2g - 2g x x x x x x x x x x arXiv: arXiv:
Hirota solutions of TBA and NLIE Francesco Ravanini Cortona 2010 A.D
CLASSICAL INTEGRABLE STRUCTURES IN QUANTUM INTEGRABLE MODELS joint work with V.Kazakov and A.Sorin Leiden, 14 April 2010 based on A.Zabrodin (ITEP, Moscow)
Numerical Solution of the Spectral Problem and BFKL at Next-to-Next-to-Leading Order in N=4 SYM Fedor Levkovich-Maslyuk King’s College London based on.
Bethe Ansatz in AdS/CFT: from local operators to classical strings Konstantin Zarembo (Uppsala U.) J. Minahan, K. Z., hep-th/ N. Beisert, J. Minahan,
Two-dimensional SYM theory with fundamental mass and Chern-Simons terms * Uwe Trittmann Otterbein College OSAPS Spring Meeting at ONU, Ada April 25, 2009.
Two scalar fields of the N=4 SYM theory: Long local operators: Can be mapped to the spin chain states: The mixing matrix is an integrable spin chain.
Integrability for the Full Spectrum of Planar AdS/CFT Nikolay Gromov DESY/HU/PNPI V.Kazakov and P.Vieira.
Integrability and Bethe Ansatz in the AdS/CFT correspondence Konstantin Zarembo (Uppsala U.) Nordic Network Meeting Helsinki, Thanks to: Niklas.
Minimal surfaces in AdS 5, Wilson loops and Amplitudes Juan Maldacena.
Heidelberg, June 2008 Volker Schomerus - DESY Hamburg - Of Mesons and Metals – Bethe & the 5th Dimension.
Finite Volume Spectrum of 2D Field Theories from Hirota Dynamics Vladimir Kazakov (ENS,Paris) Conference in honor of Kenzo Ishikawa and Noboru Kawamoto.
Integrability and AdS/CFT correspondence in three dimensions Konstantin Zarembo École Normale Supérieure Paris “Sakharov Conference”, Moscow,
Bethe Ansatz in AdS/CFT Correspondence Konstantin Zarembo (Uppsala U.) J. Minahan, K. Z., hep-th/ N. Beisert, J. Minahan, M. Staudacher, K. Z.,
Why Y? Exploiting the Hirota Integrable Dynamics of AdS/CFT Vladimir Kazakov (ENS, Paris) « Integrability in Gauge and String Theory » NORDITA, Stockholm,
Nikolay Gromov Based on works with V.Kazakov, S.Leurent, D.Volin F. Levkovich-Maslyuk, G. Sizov Nikolay Gromov Based on works with.
Nikolay Gromov Based on works with V.Kazakov, P.Vieira & A.Kozak Nikolay Gromov Based on works with V.Kazakov, P.Vieira & A.Kozak Symposium on Theoretical.
Of spinning strings in DMITRI BYKOV Trinity College Dublin Steklov Mathematical Institute Moscow Based on joint work arXiv: with L.F.ALDAY, G.ARUTYUNOV.
Twisted N=4 SYM and Integrable Conformal Fishnet Theory
Vladimir Kazakov (ENS,Paris)
Gauge/String Duality and Integrable Systems
T. McLoughlin, J. Minahan, R. Roiban, K. Zarembo
Algebraic Bethe ansatz for the XXZ Heisenberg spin chain
Integrable Conformal Field Theories in Higher Dimensions
Quantum Ising Model: finite T correlators
Gravity from Entanglement and RG Flow
Conformal Fishnet Theory
From Characters to Quantum Super-Spin Chains by Fusion
Paths into Multi-Regge Regions
Correlators in N=4 SYM via QSC
Presentation transcript:

Hirota integrable dynamics: from quantum spin chains to AdS/CFT integrability Vladimir Kazakov (ENS, Paris) International Symposium Ahrenshoop “Recent Developments in String and Field Theory” Schmöckwitz, August 27-31, 2012 Collaborations with Alexandrov, Gromov, Leurent, Tsuboi, Vieira, Volin, Zabrodin

Hirota equations in quantum integrability New approach to solution of integrable 2D quantum sigma-models in finite volume Based on discrete classical Hirota dynamics (Y-system, T-system, Baxter’s Q-functions, Plücker QQ identities, wronskian solutions,…) + Analyticity in spectral parameter! Important examples already worked out, such as su(N)×su(N) principal chiral field (PCF) FiNLIE equations from Y-system for exact planar AdS/CFT spectrum Inspiration from Hirota dynamics of gl(K|M) quantum (super)spin chains: mKP hierarchy for T- and Q- operators Gromov, V.K., Vieira V.K., Leurent Gromov, Volin, V.K., Leurent V.K., Leurent, Tsuboi Alexandrov, V.K., Leurent,Tsuboi,Zabrodin

Y-system and T-system Y-system T-system (Hirota eq.) Gauge symmetry =+ a sss-1 s+1 a-1 a+1  Related to a property of gl(N|M) irreps with rectangular Young tableaux:

Quantum (super)spin chains  Co-derivative – left differential w.r.t. group (“twist”) matrix:  Transfer matrix (T-operator) of L spins  Hamiltonian of Heisenberg quantum spin chain: V.K., Vieira  Quantum transfer matrices – a natural generalization of group characters Main property: R-matrix

Master T-operator  It is a tau function of mKP hierachy: ( polynomial w.r.t. the mKP charge )  Commutativity and conservation laws  Generating function of characters:  Master T-operator: V.K.,Vieira V.K., Leurent,Tsuboi Alexandrov, V.K., Leurent,Tsuboi,Zabrodin  Satisfies canonical mKP Hirota eq.  Hence - discrete Hirota eq. for T in rectangular irreps:

V.K., Leurent,Tsuboi Graphically (slightly generalized to any spectral parameters): Master Identity and Q-operators The proof in: V.K., Leurent,Tsuboi from the basic identity proved in: V.K, Vieira

V.K., Leurent,Tsuboi Definition of Q-operators at 1-st level of nesting: « removal » of an eigenvalue (example for gl(N)): Baxter’s Q-operators Nesting (Backlund flow): consequtive « removal » of eigenvalues Alternative approaches: Bazhanov, Lukowski, Mineghelli Rowen Staudacher Derkachev, Manashov Def: complimentary set Q at level zero of nesting Next levels: multi-pole residues, or « removing » more of eignevalues:  Generating function for characters of symmetric irreps: s

Hasse diagram and QQ-relations (Plücker id.) - bosonic QQ-rel. -- fermionic QQ rel. Example: gl(2|2) Tsuboi V.K.,Sorin,Zabrodin Gromov,Vieira Tsuboi,Bazhanov Nested Bethe ansatz equations follow from polynomiality of along a nesting path All Q’s expressed through a few basic ones by determinant formulas T-operators obey Hirota equation: solved by Wronskian determinants of Q’s Hasse diagram: hypercub E.g.

Wronskian solutions of Hirota equation We can solve Hirota equations in a strip of width N in terms of differential forms of N functions. Solution combines dynamics of gl(N) representations and the quantum fusion: -form encodes all Q-functions with indices: Solution of Hirota equation in a strip: a s For gl(N) spin chain (half-strip) we impose: E.g. for gl(2) : Krichever,Lipan, Wiegmann,Zabrodin Gromov,V.K.,Leurent,Volin

Inspiring example: principal chiral field Y-system Hirota dynamics in a in (a,s) strip of width N polynomials fixing a state jumps by Finite volume solution: finite system of NLIE: parametrization fixing the analytic structure: N-1 spectral densities (for L ↔ R symmetric states): From reality: Solved numerically by iterations Gromov, V.K., Vieira V.K., Leurent

SU(3) PCF numerics: Energy versus size for vacuum and mass gap E L/ 2  L V.K.,Leurent’09

Spectral AdS/CFT Y-system Gromov,V.K.,Vieira Type of the operator is fixed by imposing certain analyticity properties in spectral parameter. Dimension can be extracted from the asymptotics cuts in complex -plane Extra “corner” equations: s a Parametrization by Zhukovsky map: Dispersion relation

definitions: Wronskian solution of u(2,2|4) T-system in T-hook Gromov,V.K.,Tsuboi Gromov,Tsuboi,V.K.,Leurent Tsuboi Plücker relations express all 256 Q-functions through 8 independent ones

Solution of AdS/CFT T-system in terms of finite number of non-linear integral equations (FiNLIE) No single analyticity friendly gauge for T’s of right, left and upper bands. We parameterize T’s of 3 bands in different, analyticity friendly gauges, also respecting their reality and certain symmetries Gromov,V.K.,Leurent,Volin Original T-system is in mirror sheet (long cuts) Main tools: integrable Hirota dynamics + analyticity (inspired by classics and asymptotic Bethe ansatz) Alternative approach: Balog, Hegedus  We found and checked from TBA the following relation between the upper and right/left bands Inspired by: Bombardelli, Fioravanti, Tatteo Balog, Hegedus Irreps (n,2) and (2,n) are in fact the same typical irrep, so it is natural to impose for our physical gauge From unimodularity of the quantum monodromy matrix Arutyunov, Frolov

Quantum symmetry  can be analytically continued on special magic sheet in labels  Analytically continued and satisfy the Hirota equations, each in its infinite strip. Gromov,V.K. Leurent, Tsuboi Gromov,V.K.Leurent,Volin

Magic sheet and solution for the right band Only two cuts left on the magic sheet for ! Right band parameterized: by a polynomial S(u), a gauge function with one magic cut on ℝ and a density The property suggests that certain T-functions are much simpler on the “magic” sheet, with only short cuts:

Parameterization of the upper band: continuation Remarkably, choosing the q-functions analytic in a half-plane we get all T-functions with the right analyticity strips!  We parameterize the upper band in terms of a spectral density, the “wing exchange” function and gauge function and two polynomials P(u) and (u) encoding Bethe roots  The rest of q’s restored from Plucker QQ relations

Closing FiNLIE: sawing together 3 bands  We have expressed all T (or Y) functions through 6 functions  From analyticity of and we get, via spectral Cauchy representation, extra equations fixing all unknown functions  Numerics for FiNLIE perfectly reproduces earlier results obtained from Y-system (in TBA form):

Konishi operator : numerics from Y-system Gubser Klebanov Polyakov Beisert, Eden,Staudacher ABA Y-system numerics Gromov,V.K.,Vieira (confirmed and precised by Frolov) Gubser,Klebanov,Polyakov  Uses the TBA form of Y-system  AdS/CFT Y-system passes all known tests zillions of 4D Feynman graphs! Fiamberti,Santambrogio,Sieg,Zanon Velizhanin Bajnok,Janik Gromov,V.K.,Vieira Bajnok,Janik,Lukowski Lukowski,Rej,Velizhanin,Orlova Eden,Heslop,Korchemsky,Smirnov,Sokatchev From quasiclassics Gromov,Shenderovich, Serban, Volin Roiban,Tseytlin Masuccato,Valilio Gromov, Valatka Cavaglia, Fioravanti, Tatteo Gromov, V.K., Vieira Arutyunov, Frolov Leurent,Serban,Volin Bajnok,Janik

Conclusions Hirota integrable dynamics, supplied by analyticity in spectral parameter, is a powerful method of solving integrable 2D quantum sigma models. Y-system can be reduced to a finite system of non-linear integral eqs (FiNLIE) in terms of Wronskians of Q-functions. For the spectral problem in AdS/CFT, FiNLIE represents the most efficient way for numerics and weak/strong coupling expansions. Recently Y-system and FiNLIE used to find quark-antiquark potential in N=4 SYM Future directions Better understanding of analyticity of Q-functions. Quantum algebraic curve for AdS 5 /CFT 4 ? Why is N=4 SYM integrable? FiNLIE for another integrable AdS/CFT duality: 3D ABJM gauge theory BFKL limit from Y-system? 1/N – expansion integrable? Gluon amlitudes, correlators …integrable? Correa, Maldacena, Sever, Drukker Gromov, Sever

END