52 Exponent Base 52 · 53 = 55 If the numerical bases are the same, keep the base and add the exponents.
If the bases are different, multiply the bases If the bases are different, multiply the bases. If the base does not have an exponent, the exponent is one.
Rules of Exponents When multiplying bases, add exponents. When dividing bases, subtract exponents. When a raising a power to a power, multiply the exponents.
Examples: 3x2 · 4x8 3·4·x·x · x·x·x·x·x·x·x·x 12x10 -2x3y2 · 8x4y3 -16x7y5
3. 7a3b2 · 4a2b4 28a5b6 4. -3bc3 · 5b3c2 -15b4c5 5. X5 x3 x·x·x·x·x x·x·x x2
23·34·45 22·32·44 2·32·4 72 45·57·69 43·55·67 42·52·62 14,400 y6 y3 a8b6 a5b5 a3b 8. 8x5y6 4x3y4 2x2y2 15a7b9 3a3b6 5a4b3
93·84·73 92·82·72 9·82·7 4032
Practice 4a4b6 · 3a2b3 2. 5x8y3 · 3xy4 3. b9c4 b6c2 4. 10x5y8 2x4y6 25 ·36 ·45 23 ·33 ·44
6. (3a2)3 (b3)4 (4x4)5 (5c3d3)3 (8r5t6)3