Seed-based Resting State fMRI Analysis in FreeSurfer

Slides:



Advertisements
Similar presentations
VBM Voxel-based morphometry
Advertisements

1st level analysis - Design matrix, contrasts & inference
Concepts of SPM data analysis Marieke Schölvinck.
The impact of global signal regression on resting state networks
SPM 2002 C1C2C3 X =  C1 C2 Xb L C1 L C2  C1 C2 Xb L C1  L C2 Y Xb e Space of X C1 C2 Xb Space X C1 C2 C1  C3 P C1C2  Xb Xb Space of X C1 C2 C1 
Outline What is ‘1st level analysis’? The Design matrix
Seed-based functional connectivity analysis
Basics of fMRI Group Analysis Douglas N. Greve. 2 fMRI Analysis Overview Higher Level GLM First Level GLM Analysis First Level GLM Analysis Subject 3.
Statistical Signal Processing for fMRI
1 Temporal Processing Chris Rorden Temporal Processing can reduce error in our model –Slice Time Correction –Temporal Autocorrelation –High and low pass.
Basics of fMRI Preprocessing Douglas N. Greve
Signal to noise ratio (SNR) and data quality. Coils Source: Joe Gati Head coil homogenous signal moderate SNR Surface coil highest signal at hotspot high.
fMRI data analysis at CCBI
Dissociating the neural processes associated with attentional demands and working memory capacity Gál Viktor Kóbor István Vidnyánszky Zoltán SE-MRKK PPKE-ITK.
DRCMR Danish Research Centre for MR fMRI –Signal, Noise and Experimental Design Torben Ellegaard Lund.
Surface-based Analysis: Intersubject Registration and Smoothing
Connectivity of aMRI and fMRI data Keith Worsley Arnaud Charil Jason Lerch Francesco Tomaiuolo Department of Mathematics and Statistics, McConnell Brain.
TSTAT_THRESHOLD (~1 secs execution) Calculates P=0.05 (corrected) threshold t for the T statistic using the minimum given by a Bonferroni correction and.
From Localization to Connectivity and... Lei Sheu 1/11/2011.
SPM5 Tutorial Part 2 Tiffany Elliott May 10, 2007.
FMRI Methods Lecture7 – Review: analyses & statistics.
Basics of fMRI Time-Series Analysis Douglas N. Greve.
FMRI ROI Analysis 7/18/2014 Friday Yingying Wang
You had it coming... Precursors of Performance Errors Tom Eichele, MD PhD Department of Biological and Medical Psychology University of Bergen Source:
Correction for multiple comparisons in FreeSurfer
Functional Brain Signal Processing: EEG & fMRI Lesson 14
Function-Structure Integration in FreeSurfer surfer.nmr.mgh.harvard.edu/docs/ftp/pub/docs/freesurfer.func.pdf.
Multimodal Integration surfer.nmr.mgh.harvard.edu
Idiot's guide to... General Linear Model & fMRI Elliot Freeman, ICN. fMRI model, Linear Time Series, Design Matrices, Parameter estimation,
The General Linear Model
1 st level analysis: Design matrix, contrasts, and inference Stephane De Brito & Fiona McNabe.
The general linear model and Statistical Parametric Mapping I: Introduction to the GLM Alexa Morcom and Stefan Kiebel, Rik Henson, Andrew Holmes & J-B.
The general linear model and Statistical Parametric Mapping II: GLM for fMRI Alexa Morcom and Stefan Kiebel, Rik Henson, Andrew Holmes & J-B Poline.
The General Linear Model Christophe Phillips SPM Short Course London, May 2013.
The General Linear Model Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM fMRI Course London, October 2012.
Multimodal Integration: DTI/fMRI Integration, Surface Analysis
The General Linear Model (GLM)
The General Linear Model (GLM)
Multimodal Integration surfer.nmr.mgh.harvard.edu
Surface-based Analysis: Inter-subject Registration and Smoothing
The general linear model and Statistical Parametric Mapping
The General Linear Model
Correction for multiple comparisons in FreeSurfer
Function-Structure Integration in FreeSurfer
Surface-based Analysis: Intersubject Registration and Smoothing
Design Matrix, General Linear Modelling, Contrasts and Inference
Surface-based Analysis: Intersubject Registration and Smoothing
Multimodal Integration: fMRI Surface and ROI Analysis
FMRI Analysis with the FreeSurfer Functional Analysis Stream (FS-FAST) Preprocessing, First Level Analysis, and Group Analysis.
Multimodal Integration
Correction for multiple comparisons in FreeSurfer
and Stefan Kiebel, Rik Henson, Andrew Holmes & J-B Poline
Signal fluctuations in 2D and 3D fMRI at 7 Tesla
The General Linear Model (GLM)
Contrasts & Statistical Inference
Seed-based Resting State fMRI Analysis in FreeSurfer
The General Linear Model
The general linear model and Statistical Parametric Mapping
The General Linear Model
FMRI Analysis with the FreeSurfer Functional Analysis Stream (FS-FAST) Preprocessing, First Level Analysis, and Group Analysis.
Basics of fMRI Analysis: Preprocessing, First-Level Analysis, and Group Analysis thanks to doug greve for designing this talk and making these slides!
The General Linear Model (GLM)
Contrasts & Statistical Inference
MfD 04/12/18 Alice Accorroni – Elena Amoruso
The General Linear Model
The General Linear Model (GLM)
The General Linear Model
The General Linear Model
Contrasts & Statistical Inference
Presentation transcript:

Seed-based Resting State fMRI Analysis in FreeSurfer

Overview Task-based fMRI Review Seed-based Functional Connectivity Overview FS-FAST Commands

Task-based Analysis Review

Visual/Auditory/Motor Activation Paradigm 15 sec ‘ON’, 15 sec ‘OFF’ Flickering Checkerboard

Task-based fMRI Analysis y = X * b bOdd bEven bbase = Raw fMRI Waveform Contrast C = [1 -1 0] Design Matrix Regressors Data from one voxel

Statistical Parametric Map (SPM) +3% 0% -3% H0 Significance t-Map (p,z,F) (Thresholded p<0.01) sig = −log10(p) Contrast Amplitude bON - bOFF CON, COPE, CES Variance of Contrast (Error Bars) VARCOPE, CESVAR “Massive Univariate Analysis” -- Analyze each voxel separately

Resting State Correlations Biswal, et al, 1995, noticed that many voxels had a similar waveform even after removing task Were these waveforms being driven by endogenous neural activation? Resting state scan: subject just lies there, no explicit task

Functional Connectivity: Seed-based = GLM Voxel = weighted Seed Fit for the weight (b) Contrast = [1] Pass to higher group analysis Can use correlation coeff Voxel Seed

Seed Regions Average across ROI Any ROI in FS Define your own in conformed space For default mode: Isthmus cingulate Precuneus

Default Mode Isthmus cingulate seed

FC Analysis No task, subject just lies there, usually eyes open Standard preprocessing operations Motion correction Slice-timing correction (usually less important) Smoothing, etc Nuisance regressor removal Global signal removal? Motion (derivatives, powers) Low frequency (<.01Hz) Physiology (respiration, heart rate, blood pressure, etc) White matter, CSF

FS-FAST Configure the seed: Create the seed waveform fcseed-config -segid 1010 -fcname L_Posteriorcingulate.dat -fsd bold -mean -cfg mean.L_Posteriorcingulate.config 1010 = left isthmus cingulate ($FREESURFER_HOME/FreeSurferColorLUT.txt) Configuration done once Create the seed waveform fcseed-sess -s SessId –cfg L_Posteriorcingulate.config Done for each session Nuisance Waveforms (eg, WM) fcseed-config -wm -fcname wm.dat -fsd bold -pca -cfg wm.config “-wm” flag indicates to use white matter (also –vcsf for ventricles) https://surfer.nmr.mgh.harvard.edu/fswiki/FsFastFunctionalConnectivityWalkthrough

FS-FAST Configure the analysis: mkanalysis-sess -analysis fc.lpccseed.surf.lh -surface fsaverage lh -fwhm 5 -notask -taskreg L_Posteriorcingulate.dat 1 -nuisreg vcsf.dat 1 -nuisreg wm.dat 1 -mcextreg -polyfit 5

FS-FAST Configure the analysis: mkanalysis-sess -analysis fc.lpccseed.surf.lh -surface fsaverage lh -fwhm 5 -notask -taskreg L_Posteriorcingulate.dat 1 -nuisreg vcsf.dat 1 -nuisreg wm.dat 1 -mcextreg -polyfit 5 Do this instead of specifying a paradigm file

FS-FAST Configure the analysis: mkanalysis-sess -analysis fc.lpccseed.surf.lh -surface fsaverage lh -fwhm 5 -notask -taskreg L_Posteriorcingulate.dat 1 -nuisreg vcsf.dat 1 -nuisreg wm.dat 1 -mcextreg -polyfit 5 Seed waveform Created by fcseed-sess “1” – use single waveform Does not make sense to use more for a seed

FS-FAST Configure the analysis: mkanalysis-sess -analysis fc.lpccseed.surf.lh -surface fsaverage lh -fwhm 5 -notask -taskreg L_Posteriorcingulate.dat 1 -nuisreg vcsf.dat 1 -nuisreg wm.dat 1 -mcextreg -polyfit 5 Nuisance waveforms Created by fcseed-sess “1” – use single waveform Possible to use more than one for nuisance

FS-FAST Configure the analysis: mkanalysis-sess -analysis fc.lpccseed.surf.lh -surface fsaverage lh -fwhm 5 -notask -taskreg L_Posteriorcingulate.dat 1 -nuisreg vcsf.dat 1 -nuisreg wm.dat 1 -mcextreg -polyfit 5 Motion correction nuisance waveforms

FS-FAST Configure the analysis: mkanalysis-sess -analysis fc.lpccseed.surf.lh -surface fsaverage lh -fwhm 5 -notask -taskreg L_Posteriorcingulate.dat 1 -nuisreg vcsf.dat 1 -nuisreg wm.dat 1 -mcextreg -polyfit 5 Polynomial regressors. Larger order increases the bandwidth of the high-pass filter. Could also use –hpf .01

FS-FAST Summary Configure the analysis: mkanalysis-sess -analysis fc.lpccseed.surf.lh … No need to create a contrast (mkcontrast), one called “L_Posteriorcingulate” will be made for you selxavg3-sess -s sessionid -a fc.lpccseed.surf.lh isxconcat-sess –c L_Posteriorcingulate … mri_glmfit, etc lh, rh, and subcortical

End of Presentation 20