Basics of Geometry POINTS! LINES! PLANES! OH MY!.

Slides:



Advertisements
Similar presentations
Warm-ups P no calculators These problems are due in 3 min.
Advertisements

Geometry Sections 1.2 & 2.1 The Building Blocks of Geometry
Geometry Review Test Chapter 2.
Vocabulary 2.1 MA418 – Spring 2010 McAllister. Point Location in space that has no size or dimension Is usually denoted by a dot and a capital letter.
1.1 Identify Points, Lines and Planes
1.2 Points, Lines, and Planes
Basics of Geometry POINTS! LINES! PLANES!.
Points, Lines, and Planes
Warm - Up Please get our your homework and start these problems on a piece of loose leaf paper. Graph each of these ordered pairs. 1.) (-2, 1) 2.) (4,
• A point has no dimension. It is usually represented by a small dot.
What’s on the Menu Today?
1.2 Points, Lines and Planes
1.1 Points, Lines and Planes
Components of Mathematical System
1.1 Intro to Geometry Geometry The word " geometry " comes from two Greek words geo and metron meaning "earth measuring." Geometry was extremely important.
8.1 Building Blocks of Geometry
Section 1.2 Points, Lines, and Planes Undefined Terms.
Lesson 1-2 Point, Line, Plane 1 Lesson 1-2 Point, Line, Plane.
1.2 Points, Lines and Planes. Using Undefined terms and definition A point has no dimension. It is usually represented by a small dot. A Point A.
1.1 Coordinate Plane Geometry. Objectives/Assignment: Plot points on the Coordinate Plane.
Basics of Geometry Defining Terms
Jose M Bravo Jr. Chapter 11.1 Introduction to Basic Geometry Basic Geometric Concepts.
1.2 Points, Lines and Planes
1.2 Points, Lines and Planes Geometry. Objectives/Assignment: Understand and use the basic undefined terms and defined terms of geometry. Understand and.
A point has no dimension. It is represented by a small dot. A PointA UNDERSTANDING VOCABULARY TERMS.
Welcome to Geometry Unit 1 Vocabulary. Undefined Terms Point In Euclidean geometry, a point is undefined. You can think of a point as a location. A point.
1.2 Points, Lines and Planes
Geometry Ms. Bateman Points, Lines and Planes.
1.1 Points, Lines, & Planes p. 6. What is a definition? Known words used to describe a new word Known words used to describe a new word Undefined terms.
Basics of Geometry Basics of Geometry 1.4 Let’s talk about Angles.
Section 1.1 Points, Lines, and Planes 11/22/2016.
 TEKS Focus:  (4)(A) Distinguish between undefined terms, definitions, postulates, conjectures, and theorems.  (1)(D) Communicate mathematical ideas,
What is Geometry?!.
Geometry Vocabulary Chapter 1.1.
1.1 Points, Lines, and Planes
Points Lines and Planes
Pre-AP Bellwork Describe what the slope of the line is and how you can calculate it. Use complete sentences.
What is Geometry?!.
1.2 Points, Lines and Planes
• A point has no dimension. It is usually represented by a small dot.
1-2: Points, Lines, and Planes
Unit 1.1 Defining Geometry Vocabulary Number of Instructional Days: 8
1.1 Identify Points, Lines and Planes
1-2: Points, Lines, and Planes
• A point has no dimension. It is usually represented by a small dot.
Section 1.2 Points, Lines, and Planes
Warm-Up: Common Words What are “common words” we use in everyday conversation? Do you have to think about their meaning? What if you didn’t know these.
1.1 Points, Lines, and Planes
Points, Lines, and Planes
Teacher Notes Mention Skew Show all different notations.
1-1 Points, Lines, & Planes Geometry.
Building Blocks of Geometry
• A point has no dimension. It is usually represented by a small dot.
1.2 Points, Lines and Planes
1.2 Points, Lines and Planes
Basic Definitions G.CO.1 and G.CO.12 Objectives 1, 3, 6.
Chapter 1 Section 1 Points, Lines, and Planes
Identify Points Lines and Planes
Daily Warm up Draw an example of two lines intersecting. Describe the way that two lines intersect. Draw an example of two lines not intersecting. Describe.
Section 1.2 Points, Lines, and Planes
Basics of Geometry POINTS! LINES! PLANES! OH MY!.
Bell Work Problem 1) Predict the next three numbers.
Identify Points, Lines, and Planes
Points, Lines, and Planes
Chapter 1 Foundations for Geometry
Points, Lines, and Planes
1.1 – Identify Points, Lines, and Planes
I) Simple Interest, 3/ HW: P. Key Concepts!.
Bell Work Decide whether the object would model a point, line or plane. (a)   (b) (c) (d) a car antenna.
Angles Rays are important because they help us define something very important in geometry…Angles! An angle consists of two different rays that have the.
Presentation transcript:

Basics of Geometry POINTS! LINES! PLANES! OH MY!

What are the undefined terms in geometry? What concepts present the foundations of geometry? Can you sketch the intersection of lines and planes? These questions (and much more!!) will be answered by the end of this presentation. Are you ready?

Undefined Terms? The terms points, lines, and planes are the foundations of geometry, but… point, line, and plane are all what we call undefined terms. How can that be? Well, any definition we could give them would depend on the definition of some other mathematical idea that these three terms help define. In other words, the definition would be circular!

Point Has no dimension Usually represented by a small dot A The above is called point A. Note the point is represented with a capital letter.

Line Extend in one dimension. Represented with straight line with two arrowheads to indicate that the line extends without end in two directions. This is Line l, (using the lower case script letter) or symbolically we call it l A B NOTICE: The arrowheads are in both directions on the symbol

Plane Extend in two dimensions. Represented by a slanted 4 sided figure, but you must envision it extends without end, even though the representation has edges. A M This is Plane M or plane ABC (be sure to only use three of the points when naming a plane) C B

Undefined Concepts Collinear points are points that lie on the same line. l A Points A, B and C are collinear. B C

Undefined Concepts Coplanar points are points that lie on the same plane. A C Points A, B and C are coplanar. B

Line Segment Let’s look at the idea of a point in between two other points on a line. A B A B Here is line AB, or recall symbolically The line segment does not extend without end. It has endpoints, in this case A and B. The segment contains all the points on the line between A and B This is segment Notice the difference in the symbolic notation!

Ray Symbolized by Let’s look at a ray: A B A is called the initial point The initial point is always the first letter in naming a ray. Notice the difference in symbols from both a line and segment. A B Ray AB extends in one direction without end. Symbolized by

Symbol alert! BUT… Not all symbols are created equal! is the same as A

Symbol alert!! The ray is different! is not the same as A B A B Initial point 1st is not the same as A B A B Notice that the initial point is listed first in the symbol. Also note that the symbolic ray always has the arrowhead on the right regardless of the direction of the ray.

Opposite Rays C is the common initial point for the rays! If C is between A and B, A B C then and are opposite rays. C is the common initial point for the rays!

Angles Rays are important because they help us define something very important in geometry…Angles! An angle consists of two different rays that have the same initial point. The rays are sides of the angles. The initial point is called the vertex. Notation: We denote an angle with three points and symbol. The middle point is always the vertex. We can also name the angle with just the vertex point. This angle can be denoted as: vertex B sides A C

Classifying Angles Angles are classified as acute, right, obtuse, and straight, according to their measures. Angles have measures greater than 0° and less or equal to 180°. A A A A Acute angle 0°< m A < 90° Right angle m A = 90° Obtuse angle 90°< m A < 180° Straight angle m A = 180°

Intersections of lines and planes Two or more geometric figures intersect if they have one or more points in common. The intersection of the figures is the set of points the figure has in common How do 2 line intersect? How do 2 planes intersect? What about a line and a plane? Think!!

Modeling Intersections To think about the questions on the last slide lets look at the following… Point E is the intersection of plane H and line EC Two lines intersect at a point, like here at point A. E B A F D H C G Line BF is the intersection of the planes G and H.

Something to think about… You have just finished the first section in Geometry! This is a very important section because it lays the foundation for the rest of the year! Much of the vocabulary you will encounter in this course will have its foundation in the ideas presented in this lesson. Can you name the three undefined terms in geometry? Do you know the difference between and obtuse and straight angle? Can you sketch the intersection of a plane and a line? How about two planes? Can you visualize the intersection of two planes? How about three? The classfun and homefun provided will help you in developing a better understanding of the concepts!