Improved Shortest Path Algorithms for Nearly Acyclic Directed Graphs L. Tian and T. Takaoka University of Canterbury New Zealand 2007
Introduction What is nearly acyclic directed graphs? (1) Takaoka (1998) explained this using a strongly connected component (sc- component) approach, cyc(G). SC 1 SC 2 e1e1 e2e2 SC 1 e1e1 e2e2 In this example, cyc(G) = 3
Solve the SSSP problem using sc- component decomposition 1.Compute sc-components V r,V r-1, …,V 1 ; 2.for v ∈ V do d[v] ← ∞; 3.d[s] ← 0; 4.for i ← r to 1 do{ 5.Solve the GSS for G i ; 6.for V j such that (V i, V j ) ∈ E do 7. for v ∈ V i and w ∈ V j such that (v, w) ∈ E do 8. d[w] ← min{d[w], d[v] + cost(v,w)}; 9.} The time complexity of this algorithm is O(m + nlogk), where m is the number of edges in a graph and n is the number of vertices. K is the maximum size of sc components
Introduction (continue) (2) Saunders and Takaoka (2005) used a 1-dominator approach to explain that. The SSSP algorithm based on the approach is O(m+rlogr) where r is the number of triggers. AC 1 AC 2 e1e1 e2e2 e3e3 e3e3 AC 1 AC 2 e1e1 e2e2
Restricted Depth First Search for 1-dominator decomposition 1.function AcyclicSetA(u){ 2. VertexSet A, L; 3. procedure rdfs(v){ 4. A ← A + {v}; 5. for each w ∈ OUT(A) do{ 6. if w L then L ← L + {w}; // w is visited 7. inCount[w] ← inCount[w] – 1; 8. if inCount[w] = 0 then rdfs(w); // w is unlocked 9. } 10. } 11. A ← ; L ← {u}; 12. inCount[u] ← inCount[u] + 1; // prevents re-traversal of u 13. rdfs(u); 14. VertexSet B ← L – A; // boundary vertices 15. for each w ∈ L do inCount[w] ← |IN(w)|; 16. return (A,D); 17.}
Computing the 1-Dominator Set 1.for all v ∈ V do inCount[v] ← |IN(v)|; 2.for all v ∈ V do vertexType[v] ← unknown; 3.a queue Q ← {s}; 4.while Q ≠ do{ 5. Remove the next vertex u from Q; 6. if vertexType[u] = unknown then { 7. (A, B) ← AcyclicSetA(u); 8. for each v ∈ A do Let AC[v] refer to A; 9. for each v ∈ A do vertexType[v] ← nontrigger; 10. vertexType[u] ← trigger; 11. for each v ∈ B do 12. if vertexType[v] = unknown and v Q then Add v to Q; 13. } 14.}
SSSP Algorithm using Acyclic Decomposition 1.procedure decreaseKey(u){ 2. for each v ∈ AC[u] in topological order do 3. for each w ∈ OUT[v] and w S do 4. d[w] ← min{d[w], d[v] + cost(v,w)}; 5.} 6.for all v ∈ V do d[v] ← ∞ ; 7.solution set S ← ; 8.insert all triggers into frontier set F; 9.d[s] ← 0; // s is the source vertex 10.if s is not a trigger then decreaseKey(s); 11.while F is not empty do{ 12. find u from F with minimum key and delete u from F; 13. S ← {u}; 14. decreaseKey(u); 15.}
Higher-Order Approach This approach extends the technique of sc-component decomposition, denoted by cyc h (G). cyc 1 (G) cyc 2 (G) In the second order decomposition, it eats the black node and then decomposes the subgraph.
Higher-Order SSSP Algorithm 1.procedure Dynamic(G, SV){ 2. Compute h th order sc-components V h r, V h r-1, …,V h 1 ; 3. for i ← r to 1 do{ 4. for V h j such that (V h i, V h j ) ∈ E h do 5. for v ∈ V h i and w ∈ V h j such that (v, w) ∈ E do 6. d[w] ← min{d[w], d[v] + cost(v,w)}; 7. v min ← w that gives min{d[w] | w ∈ V h i-1 }; 8. SV ← {v min }; 9. if (|G h i-1 |>c 1 ) and (h+1< c 2 ) 10. then { h ← h+1; Dynamic(G h i-1 ; SV); } 11. else solve the GSS for G h i-1 ; 12. } 13.} 14.for all v ∈ V do d[v] ← ∞; 15.d[s] ← 0; // s is the source vertex 16.Dynamic(G, {s});
Hierarchical Approach This approach is based on modifications of the sc-component and 1-dominator approaches. AC 3 AC 1 AC 2 AC 4 AC 5 SC 1 SC 2
Hierarchical Decomposition Algorithm 1. function HierarchySets(v 0 ) { 2. procedure hdfs(v) { 3.(A, B) ← AcyclicSet(v); 4. Let AC[v] refer to A; 5. vertexType[v] ← trigger ; 6. for all u ∈ A do vertexType[u] ← non-trigger; 7.for all u ∈ B do 8. if visitNum[u] = 0 do{ 9. c ← c + 1 ; visitNum[u] ← c ; lowlink[u] ← c; 10. T ← T + {u} ; 11. hdfs(u) ; // search from unvisited v ∈ B 12. if u ∈ T then lowlink[v] ← min(lowlink[u],lowlink[v] ); 13. else lowlink[v] ← min(lowlink[v], vsistNum[u] ); //update lowlink[v] from connected triggers 14. } 15. if lowlink[v] = visitNum[v] and v ∈ T do { 16. VertexSet C ← pop up vertices from T until v; 17. p ← p + 1; // count sc-components 18. Let SC[p] refer to C; 19. } 20. } 21. VertexSet AC ← , SC ← , T ← ; 22. for all v ∈ V do { 23. inCount[v] ← |IN(v)|; vertexType[v] ← unknown; 24. visitNum[v] ← 0; lowlink[v] ← ; 25. } 26. p ← 0; c ← 0; 27. for all unvisited v 0 ∈ V do { 28. c ← c + 1; visitNum[v 0 ] ← c; lowlink[v 0 ] ← c; 29. T ← T + v 0 ; 30. hdfs(v 0 ); 31. } 32. return(AC, SC, p); 33. }
1-2-dominator sets Difficulty on 2-dominator sets: A 1-2-dominator set is a generalization of the 1-dominator set. u1u1 u2u2 u3u3 v1v1 v2v2 V j+1 v3v3 vjvj V j+2 V 2j-1 u1u1 u2u2 u3u3 v1v1 v2v2 V j+1 v3v3 vjvj V j+2 V 2j-1
Restricted Depth First Search for 1-2-dominator decomposition 1.function AcyclicSetA(u){ 2. VertexSet A, L; 3. procedure rdfs(v){ 4. A ← A + {v}; 5. for each w ∈ OUT(A) do{ 6. if w L then L ← L + {w}; // w is visited 7. inCount[w] ← inCount[w] – 1; 8. if inCount[w] = 0 then rdfs(w); // w is unlocked 9. } 10. } 11. A ← ; L ← {u}; 12. inCount[u] ← inCount[u] + 1; // prevents re-traversal of u 13. rdfs(u); 14. VertexSet B ← L – A; // boundary vertices 15. for each w ∈ B do { 15.1 inc(v,w) ← |IN(w)| – inCount[w]; 15.2 BS[v] ← (w, inc(v,w)); 15.3 inCount[w] ← |IN(w)|; 15.4 } 16. return (A,B); 17. }
1-2-Dominator Set Algorithm 1. procedure gdfs(u 1, u 2, v) { 2. for all w ∈ BS[v] do { 3. inCount[w] ← inCount[w] - inc(v, w) ; 4. if inCount[w] = 0 do { // w is unlocked 5. T 1 ← T 1 - {w} ; // 1-dominator set T 1 6. AC[u 1 ] ← AC[u 1 ] + {w}; 7. AC[u 2 ] ← AC[u 2 ] + {w}; 8. gdfs(u 1, u 2, w); 9. } 10. } 11. } /***** main program *****/ 12. Compute 1-dominator set T 1 ; 13. for u 1 ∈ T 1 do{ 14. inCount[u 1 ] ← inCount[u 1 ] + 1; 15. for all v ∈ BS[u 1 ] do inCount[v] ← inCount[v] - inc(u 1, v); 16 for u 2 ∈ T 1 - {T 1 } do { 17. inCount[u 1 ] ← inCount[u 2 ] + 1; 18. gdfs(u 1, u 2, u 2 ); 19. } 20. T 1 ← T 1 - {u 1 } ; 21. for all v ∈ BS[u 1 ] do inCount[v] ← |IN(v)|; 22. }
SSSP Algorithm using Acyclic Decomposition 1.procedure decreaseKey(u){ 2. for each v ∈ AC[u] in topological order do 3. for each w ∈ OUT[v] and w S do 4. d[w] ← min{d[w], d[v] + cost(v,w)}; 5.} 6.for all v ∈ V do d[v] ← ∞ ; 7.solution set S ← ; 8.insert all triggers into frontier set F; 9.d[s] ← 0; // s is the source vertex 10.if s is not a trigger then decreaseKey(s); 11.while F is not empty do{ 12. find u from F with minimum key and delete u from F; 13. S ← {u}; 14. decreaseKey(u); 15.}
Future research k domnator approach: Acyclic structures are dominated by up to k trigger vertices All Pairs with 1-dominator set O(mn + r 2 log r) General feedback set approach for all pairs: If we have a feedback vertex set of size r, the best time is O(mn + r 3 ). Conjecture O(mn + r 2 log r)?