Stat 35b: Introduction to Probability with Applications to Poker

Slides:



Advertisements
Similar presentations
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Midterms 2.Flushes 3.Hellmuth vs. Farha 4.Worst possible beat 5.Jackpot.
Advertisements

Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Savage/Tyler, Kaplan/Gazes 2.P(flop a full house) 3.Bernoulli random.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1. Bayes’ Rule again 2.Gold vs. Benyamine 3.Bayes’ Rule example 4.Variance,
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Midterms. 2.Hellmuth/Gold. 3.Poisson. 4.Continuous distributions.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Ly vs Negreanu. 2.Flush draws and straight draws 3.Project B teams.
Lectures prepared by: Elchanan Mossel Yelena Shvets Introduction to probability Stat 134 FAll 2005 Berkeley Follows Jim Pitman’s book: Probability Section.
Stat 13, Tue 6/5/ Hand in hw7. 2. Practice problems. Final exam is Thur, 6/7, in class. It has 20 multiple choice questions. Only about 50% are on.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hand in hw4. 2.Review list 3.Tournament 4.Sample problems * Final.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day, Thur 3/8/12: 0.HAND IN HW3 again! 1.E(X+Y) example corrected. 2.Random.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 0. Collect hw2, return hw1, give out hw3. 1.Project A competition.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Midterm. 2.Review of Bernoulli and binomial random variables. 3.Geometric.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.E(cards til 2 nd king). 2.Negative binomial. 3.Rainbow flops examples,
Stat 35: Introduction to Probability with Applications to Poker Outline for the day: 1.Addiction 2.Syllabus, etc. 3. Wasicka/Gold/Binger Example 4.Meaning.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Collect Hw4. 2.Review list. 3.Answers to hw4. 4.Project B tournament.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day, Tue 3/13/12: 1.Collect Hw WSOP main event. 3.Review list.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.hw, terms, etc. 2.WSOP example 3. permutations, and combinations.
Outline for the day: 1.Discuss handout / get new handout. 2.Teams 3.Example projects 4.Expected value 5.Pot odds calculations 6.Hansen / Negreanu 7.P(4.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Addiction 2.Syllabus, etc. 3. Wasicka/Gold/Binger Example 4.Meaning.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.HW3 2.Project B teams 3.Gold vs. Helmuth 4.Farha vs. Gold 5.Flush.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Deal-making and expected value 2.Odds ratios, revisited 3.Variance.
Exam 2: Rules Section 2.1 Bring a cheat sheet. One page 2 sides. Bring a calculator. Bring your book to use the tables in the back.
Stat 35b: Introduction to Probability with Applications to Poker Poker Code competition: all-in or fold.   u 
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1. Review list 2.Bayes’ Rule example 3.CLT example 4.Other examples.
Short stack strategy: Draws in a free play situation Strategy: No Limit.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Expected value and pot odds, continued 2.Violette/Elezra example.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day, Tue 3/13/12: 1.Fred Savage hand. 2.Random walks, continued, for 7.14.
Stat 13, Thu 4/19/ Hand in HW2! 1. Resistance. 2. n-1 in sample sd formula, and parameters and statistics. 3. Probability basic terminology. 4. Probability.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Project B example, again 2.Booth vs. Ivey 3.Bayes Rule examples.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.E(X+Y) = E(X) + E(Y) examples. 2.CLT examples. 3.Lucky poker. 4.Farha.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Odds ratios revisited. 2.Gold/Hellmuth. 3.Deal making. 4.Variance.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hw, terms, etc. 2.Ly vs. Negreanu (flush draw) example 3. Permutations.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hand in hw1! Get hw2. 2.Combos, permutations, and A  vs 2  after.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Tournaments 2.Review list 3.Random walk and other examples 4.Evaluations.
1)Hand in HW. 2)No class Tuesday (Veteran’s Day) 3)Midterm Thursday (1 page, double-sided, of notes allowed) 4)Review List 5)Review of Discrete variables.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.HW4 notes. 2.Law of Large Numbers (LLN). 3.Central Limit Theorem.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.PDFs and CDFs, for Random walks, ch 7.6. Reflection principle,
(Day 14 was review. Day 15 was the midterm.) Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Return and review.
Outline: 1) Odds ratios, continued. 2) Expected value revisited, Harrington’s strategy 3) Pot odds 4) Examples.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1. Combos, permutations, and A  vs 2  after first ace 2.Conditional.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Review List 2.Review of Discrete variables 3.Nguyen / Szenkuti.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hw, terms, etc. 2.Ly vs. Negreanu (flush draw) example 3. Permutations.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Odds ratio example again. 2.Random variables. 3.cdf, pmf, and density,
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Presentation transcript:

Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: Review list. Farha vs. Antonius, expected value and variance. Flush draws and straight draws. Bayes’s rule example. 5. E(cards til 2nd king) again. 6. Rainbow flops, E(X), and SD(X). Midterm is Thur, Feb 21, in class. 11:10-12:20. 70 min. Open book plus one page of notes, double sided. Bring a calculator!   u    u 

1. Review List Basic principles of counting. Axioms of probability, and addition rule. Permutations & combinations. Conditional probability. Independence. Multiplication rules. P(AB) = P(A) P(B|A) [= P(A)P(B) if ind.] Odds ratios. Random variables (RVs). Discrete RVs, and probability mass function (pmf). Expected value. Pot odds calculations. Luck, skill, and deal-making. Variance and SD. Bernoulli RV. [0-1. µ = p, s = √(pq). ] Binomial RV. [# of successes, out of n tries. µ = np, s = √(npq).] Geometric RV. [# of tries til 1st success. µ = 1/p, s = (√q) / p. ] Negative binomial RV. [# of tries til rth success. µ = r/p, s = (√rq) / p. ] E(X+Y), V(X+Y) (ch. 7.1). Bayes’s rule (ch. 3.4). Basically, we’ve done all of ch. 1-5 except 4.6, 4.7, and 5.5. We’ve also done most of 6.1-6.5 but this won’t be on the midterm.

2) Farha vs. Antonius, expected value and variance. Recall that E(X+Y) = E(X) + E(Y). Whether X & Y are independent or not! Similarly, E(X + Y + Z + …) = E(X) + E(Y) + E(Z) + … And, if X & Y are independent, then V(X+Y) = V(X) + V(Y). so SD(X+Y) = √[SD(X)^2 + SD(Y)^2]. Also, if Y = 9X, then E(Y) = 9E(Y), and SD(Y) = 9SD(X). V(Y) = 81V(X). Farha vs. Antonius. Running it 4 times. Let X = chips you have after the hand. Let p be the prob. you win. X = X1 + X2 + X3 + X4, where X1 = chips won from the first “run”, etc. E(X) = E(X1) + E(X2) + E(X3) + E(X4) = 1/4 pot (p) + 1/4 pot (p) + 1/4 pot (p) + 1/4 pot (p) = pot (p) = same as E(Y), where Y = chips you have after the hand if you ran it once! But the SD is smaller: clearly X1 = Y/4, so SD(X1) = SD(Y)/4. So, V(X1) = V(Y)/16. V(X) ~ V(X1) + V(X2) + V(X3) + V(X4), = 4 V(X1) = 4 V(Y) / 16 = V(Y) / 4. So SD(X) = SD(Y) / 2.

3) Flush draws & Straight draws. Probability needed to call all-in: P(win) must be ≥ Bet ÷ (Pot + Bet). If your opponent bets the amount that was previously in the pot, then this probability is 1/3. Suppose you have two s & there are exactly two s on the flop. [No info about opponents.] Given this info, P(making a flush)? = P(at least one more  on turn or river) = 1 - P(non- on turn AND non- on river) = 1 - choose(38,2) ÷ choose(47,2) = 35.0%. *** However, this assumes you’ll get to see both the turn and the river! P(making an open-ended straight draw on turn or river)? [8 outs.] = 1 - P(non-out on turn AND non-out on river) = 1 - choose(39,2) ÷ choose(47,2) = 31.5%. *** However, if you hit your straight and bet, your opponent might call! Implied odds: P(win) must be ≥ Bet ÷ (Pot + Bet + extra amount you’ll win later)

4. Bayes’ rule example. Suppose P(your opponent has the nuts) = 1%, and P(opponent has a weak hand) = 10%. Your opponent makes a huge bet. Suppose she’d only do that with the nuts or a weak hand, and that P(huge bet | nuts) = 100%, and P(huge bet | weak hand) = 30%. What is P(nuts | huge bet)? P(nuts | huge bet) = P(huge bet | nuts) * P(nuts) ------------------------------------------------------------------------------------------- P(huge bet | nuts) P(nuts) + P(huge bet | horrible hand) P(horrible hand) = 100% * 1% --------------------------------------- 100% * 1% + 30% * 10% = 25%.

5. E(cards til 2nd king), revised. Z = the number of cards til the 2nd king. What is E(Z)? Let X1 = number of non-king cards before 1st king. Let X2 = number of non-kings after 1st king til 2nd king. Let X3 = number of non-kings after 2nd king til 3rd king. Let X4 = number of non-kings after 3rd king til 4th king. Let X5 = number of non-kings after 4th king til the end of the deck. Clearly, X1 + X2 + X3 + X4 + X5 + 4 = 52. By symmetry, E(X1) = E(X2) = E(X3) = E(X4) = E(X5). Therefore, E(X1) = E(X2) = 48/5. Z = X1 + X2 + 2, so E(Z) = E(X1) + E(X2) = 48/5 + 48/5 + 2 = 21.2.

6. Rainbow flops. P(Rainbow flop) = choose(4,3) * 13 * 13 * 13 ÷ choose(52,3) choices for the 3 suits numbers on the 3 cards possible flops ~ 39.76%. Q: Out of 100 hands, what is the expected number of rainbow flops? +/- what? X = Binomial (n,p), with n = 100, p = 39.76%, q = 60.24%. E(X) = np = 100 * 0.3976 = 39.76 SD(X) = √(npq) = sqrt(23.95) = 4.89. So, expect around 39.76 +/- 4.89 rainbow flops, out of 100 hands.

6. Rainbow flops, continued. P(Rainbow flop) ~ 39.76%. Q: Let X = the number of hands til your 4th rainbow flop. What is P(X = 10)? What is E(X)? What is SD(X)? X = negative binomial (r,p), with r = 4, p = 39.76%, q = 60.24%. P(X = k) = choose(k-1, r-1) pr qk-r. Here k = 10. P(X = 10) = choose(9,3) 39.76%4 60.24%6 = 10.03%. µ = E(X) = r/p = 4 ÷ 0.3976 = 10.06 hands. s = SD(X) = (√rq) / p = sqrt(4*0.6024) / 0.3976 = 3.90 hands. So, you expect it typically to take around 10.06 +/- 3.90 hands til your 4th rainbow flop.