Warm Up Write the equation of the line that passes through each pair of points in slope-intercept form. 1. (0, –3) and (2, –3) 2. (5, –3) and (5, 1) 3.

Slides:



Advertisements
Similar presentations
Copy in Agenda and add to TOC: –#5 Finding Slope and Y-intercept Given Slope Intercept Form.
Advertisements

Parallel & Perpendicular Slopes II
Writing Linear Equations Using Slope Intercept Form
Point-Slope Form 12-4 Warm Up Problem of the Day Lesson Presentation
2.4 Writing the Equation of a Line
Unit 1 Solving Linear Systems by Graphing
Writing Equations Index Card Activity.
Using Slopes and Intercepts
The equation of a line - Equation of a line - Slope - Y intercept
12-3 Using Slopes and Intercepts Course 3 Warm Up Warm Up Problem of the Day Problem of the Day Lesson Presentation Lesson Presentation.
Pre-Class Warm Up Find the slope of the line that passes through each pair of points. 1. (3, 6) and (-1, 4) 2. (1, 2) and (6, 1) 3. (4, 6) and (2, -1)
Write an equation given two points
Warm Up Find the slope of the line that passes through each pair of points. 1. (3, 6) and (–1, 4) 2. (1, 2) and (6, 1) 3. (4, 6) and (2, –1) 4. (–3, 0)
Lesson 5.6 Point-Slope Form of the Equation of a Line.
Point-Slope Form 11-4 Warm Up Problem of the Day Lesson Presentation
Point-Slope Form 8-4 Warm Up Warm Up Lesson Presentation Lesson Presentation Problem of the Day Problem of the Day Lesson Quizzes Lesson Quizzes.
Point slope form of an equation Y - y₁ = m(X- x₁) (x₁, y₁) An ordered pair on the line m slope.
Point slope form of an equation Y - y₁ = m(X- x₁) (x₁, y₁) An ordered pair on the line m slope.
EXAMPLE 1 Identify slope and y-intercept Identify the slope and y- intercept of the line with the given equation. y = 3x x + y = 22. SOLUTION The.
Pre-Algebra 11-3 Using Slopes and Intercepts Warm Up Find the slope of the line that passes through each pair of points. 1. (3, 6) and (-1, 4) 2. (1, 2)
Pre-Algebra Point-Slope Form. Learn to find the equation of a line given one point and the slope.
Using Slopes and Intercepts Warm Up Find the slope of the line that passes through each pair of points. 1. (3, 6) and (–1, 4) 2. (1, 2) and (6, 1) 3. (4,
Equations of Lines Part 2 Students will: Write slope intercept form given a point and a slope 1.
Using Slopes and Intercepts
How to Write an Equation of a Line Given TWO points
Lesson 5.6 Point-Slope Form of the Equation of a Line
Warm Up Find the slope of the line that passes through each pair of points. 1. (3, 6) and (-1, 4) 2. (1, 2) and (6, 1) 3. (4, 6) and (2, -1) 4. (-3, 0)
Point-Slope Form and Writing Linear Equations
Equations of Lines Part 2
3.3: Point-Slope Form.
Point-Slope Form 11-4 Warm Up Problem of the Day Lesson Presentation
Point-Slope Form.
Using Slopes and Intercepts
Equations of straight lines
2.4 Writing the Equation of a Line
Objectives Graph a line and write a linear equation using point-slope form. Write a linear equation given two points.
Objective The student will be able to:
Slope-Intercept Form.
Warm Up Find the slope of the line containing each pair of points.
Writing Linear Equations From Key Information
2.4 Writing the Equation of a Line
Point-Slope Form and Writing Linear Equations
8/29/12 Writing the Equation of a Line
Writing Linear Equations When Given a Point and the Slope Day 2
Writing Linear Equations When Given Two Points on the Line
Point-Slope Form 4-7 Warm Up Lesson Presentation Lesson Quiz
Writing the Equation of a Line
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Slope-Intercept Form 5.1 Day 1 Day 2 Day 3.
12.4 Point-Slope Form.
Writing Linear Equations Given Two Points
Forms of a linear equation
Write the equation of the line.
Point-Slope Form 11-4 Warm Up Problem of the Day Lesson Presentation
Point-Slope Form 12-4 Warm Up Problem of the Day Lesson Presentation
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Write and graph lines in point-slope form and standard form
Slope-intercept Form of Equations of Straight Lines
General Form of Equation of a Straight Line.
Using Slopes and Intercepts
Substitute either point and the slope into the slope-intercept form.
Point-Slope Form 4-7 Warm Up Lesson Presentation Lesson Quiz
Point-Slope Form 11-4 Warm Up Problem of the Day Lesson Presentation
Lesson: 4 – 6 Equations of Lines
6 minutes Warm-Up 1. Find the slope of the line containing the points (-2,5) and (4,6). 2. Find the slope of the line y = x – Find the slope of the.
Warm-Up 5.1
Homework Lesson 4.03_ pg 287_ #8-11.
2.4 Writing the Equation of a Line
Point-Slope Form y – y1 = m(x – x1)
WARM UP 3 WRITING EQUATIONS Write in slope-intercept form the equation of the line that passes through the given point and has the given slope. (Lesson.
Presentation transcript:

Warm Up Write the equation of the line that passes through each pair of points in slope-intercept form. 1. (0, –3) and (2, –3) 2. (5, –3) and (5, 1) 3. (–6, 0) and (0, –2) 4. (4, 6) and (–2, 0) y = –3 x = 5 y = – x – 2 1 3 y = x + 2

Pg. 221

The point-slope form of an equation of a line with slope m passing through (x1, y1) is y – y1 = m(x – x1). Point on the line Point-slope form y – y1 = m (x – x1) (x1, y1) slope

video

Additional Example 1A: Using Point-Slope Form to Identify Information About a Line Use the point-slope form of each equation to identify a point the line passes through and the slope of the line. y – 7 = 3(x – 4) y – y1 = m(x – x1) The equation is in point-slope form. y – 7 = 3(x – 4) Read the value of m from the equation. m = 3 (x1, y1) = (4, 7) Read the point from the equation. The line defined by y – 7 = 3(x – 4) has slope 3, and passes through the point (4, 7).

Additional Example 1B: Using Point-Slope Form to Identify Information About a Line 3 y – 1 = (x + 6) y – y1 = m(x – x1) 1 3 y – 1 = (x + 6) y – 1 = [x – (–6)] 1 3 Rewrite using subtraction instead of addition. m = 1 3 (x1, y1) = (–6, 1) The line defined by y – 1 = (x + 6) has slope , and passes through the point (–6, 1). 1 3

Check It Out: Example 1A Use the point-slope form of each equation to identify a point the line passes through and the slope of the line. y – 5 = 2 (x – 2) y – y1 = m(x – x1) The equation is in point-slope form. y – 5 = 2(x – 2) Read the value of m from the equation. m = 2 (x1, y1) = (2, 5) Read the point from the equation. The line defined by y – 5 = 2(x – 2) has slope 2, and passes through the point (2, 5).

Check It Out: Example 1B 2 3 y – 2 = (x + 3) y – y1 = m(x – x1) 2 3 y – 2 = (x + 3) y – 2 = [x – (–3)] 2 3 Rewrite using subtraction instead of addition. m = 2 3 (x1, y1) = (–3, 2) The line defined by y – 2 = (x + 3) has slope , and passes through the point (–3, 2). 2 3

Additional Example 2A: Writing the Point-Slope Form of an Equation Write the point-slope form of the equation with the given slope that passes through the indicated point. the line with slope 4 passing through (5, –2) y – y1 = m(x – x1) Substitute 5 for x1, –2 for y1, and 4 for m. [y – (–2)] = 4(x – 5) y + 2 = 4(x – 5) The equation of the line with slope 4 that passes through (5, –2) in point-slope form is y + 2 = 4(x – 5).

Additional Example 2B: Writing the Point-Slope Form of an Equation the line with slope –5 passing through (–3, 7) y – y1 = m(x – x1) Substitute –3 for x1, 7 for y1, and –5 for m. y – 7 = -5[x – (–3)] y – 7 = –5(x + 3) The equation of the line with slope –5 that passes through (–3, 7) in point-slope form is y – 7 = –5(x + 3).

Check It Out: Example 2A Write the point-slope form of the equation with the given slope that passes through the indicated point. the line with slope 2 passing through (2, –2) y – y1 = m(x – x1) Substitute 2 for x1, –2 for y1, and 2 for m. [y – (–2)] = 2(x – 2) y + 2 = 2(x – 2) The equation of the line with slope 2 that passes through (2, –2) in point-slope form is y + 2 = 2(x – 2).

Check It Out: Example 2B the line with slope –4 passing through (–2, 5) y – y1 = m(x – x1) Substitute –2 for x1, 5 for y1, and –4 for m. y – 5 = –4[x – (–2)] y – 5 = –4(x + 2) The equation of the line with slope –4 that passes through (–2, 5) in point-slope form is y – 5 = –4(x + 2).

Additional Example 3: Entertainment Application A roller coaster starts by ascending 20 feet for every 30 feet it moves forward. The coaster starts at a point 18 feet above the ground. Write the equation of the line that the roller coaster travels along in point-slope form, and use it to determine the height of the coaster after traveling 150 feet forward. Assume that the roller coaster travels in a straight line for the first 150 feet. As x increases by 30, y increases by 20, so the slope of the line is or . The line passes through the point (0, 18). 20 30 2 3

Additional Example 3 Continued y – y1 = m(x – x1) Substitute 0 for x1, 18 for y1, and for m. 2 3 y – 18 = (x – 0) 2 3 The equation of the line the roller coaster travels along, in point-slope form, is y – 18 = x. Substitute 150 for x to find the value of y. 2 3 y – 18 = (150) 2 3 y – 18 = 100 y = 118 The value of y is 118, so the roller coaster will be at a height of 118 feet after traveling 150 feet forward.