Summary of the non-accelerator particle physics workshop session

Slides:



Advertisements
Similar presentations
LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Advertisements

NEMO-III Status and prospects. 12 December 2005 HEP group Christmas meeting Vladimir Vasiliev.
IS THE NEUTRINO A MAJORANA OR A DIRAC PARTICLE ? Ettore Fiorini, Bologna June or Lepton number conservation or violation Has neutrino a finite.
Proposal to join NEMO-3  decay experiment P. Adamson, R. Saakyan, J. Thomas UCL 27 January 2003.
Double Beta Decay review
The SNO+ Experiment: Overview and Status
Recent Discoveries in Neutrino Physics: Understanding Neutrino Oscillations 2-3 neutrino detectors with variable baseline 1500 ft nuclear reactor Determining.
March 12, 2005Benasque Neutrinos Theory Neutrinos Theory Carlos Pena Garay IAS, Princeton ~
Double Beta Decay L=2 2: (A,Z)  (A,Z+2) + 2e- + 2ne
 decay and neutrino mass 35 isotopes in nature …and Mixing Neutrino Mass.. Imperial College/RAL Nottingham Nov 17 ’04 Dave Wark.
Experimental status of the Double Beta Decay Marisa Pedretti INFN Milano Bicocca.
Double Beta Decay review
GERDA: GERmanium Detector Array
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
CENBG, University Bordeaux 1 CNRS/IN2P3
DBD matrix elements Welcome and aim of the workshop Experimental situation Outcome.
No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay.
Aldo IanniNNN05 April 8, Status and future prospects of Gran Sasso Aldo Ianni INFN Gran Sasso Laboratory NNN05 Aussois, April 7-9.
Double beta decay Ruben Saakyan UCL 25 March 2004.
Double Beta Decay Present and Future
Full EXO in Cryopit Cryopit Workshop August 2011 David Sinclair.
NEMO-3  experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Cosener’s House, Abingdon.
Double Beta Decay in SNO+ Huaizhang Deng University of Pennsylvania.
1 LENA Low Energy Neutrino Astronomy NOW 2010, September 6, 2010 Lothar Oberauer, TUM, Physik-Department.
Recommendations for Science at SNOLAB Andrew Hime On behalf of the Experiment Advisory Committee Aug. 17, 2005 SNOLAB Surface Building.
LAGUNA Large Apparatus for Grand Unification and Neutrino Astrophysics Launch meeting, Heidelberg, March 2007, Lothar Oberauer, TUM.
Andrea Giuliani University of Insubria (Como) and INFN Milano-Bicocca Italy Searches for Neutrinoless Double Beta Decay Epiphany Conference Krakow 6 th.
Methods and problems in low energy neutrino experiments (solar, reactors, geo-) I G. Ranucci ISAPP 2011 International School on Astroparticle physics THE.
WORKING GROUP “NEUTRINO MASS” Valencia, 8/11/2006 Attending people: Oliviero Cremonesi – INFN – CUORE / MARE Flavio Gatti – INFN – MARE Andrea Giuliani.
NWG 4/11/03 Executive Summary R.N. Cahn, W.C. Carithers, S.J. Freedman, K.M. Heeger, R.W. Kadel, V. Koch, K.T. Lesko, Z. Ligeti (deputy), K-B. Luk, H.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
Neutrinoless double-beta decay and the SuperNEMO project. Darren Price University of Manchester 24 November, 2004.
Béla Majorovits for the GERDA collaboration ICHEP 2012, Melbourne, Australia, July Béla Majorovits for the GERDA collaboration Status and plans.
Nd double beta decay search with SNO+ K. Zuber, on behalf of the SNO+ collaboration.
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
The Daya Bay Reactor Neutrino Experiment R. D. McKeown Caltech On Behalf of the Daya Bay Collaboration CIPANP 2009.
IOP HEPP Matthew Kauer Double beta decay of Zr96 using NEMO- 3 and calorimeter R&D for SuperNEMO IOP HEPP April Matthew Kauer UCL London.
Reactor neutrinos, double beta and beta decays Experimental review Fabrice Piquemal Laboratoire Souterrain de Modane (CNRS/IN2P3 and CEA/IRFU) and Centre.
Measuring  13 with Reactors Stuart Freedman HEPAP July 24, 2003 Bethesda Reactor Detector 1Detector 2 d2d2 d1d1.
28 May 2008NEMO-3 Neutrino081 NEMO-3 A search for double beta decay Robert L. Flack University College London On behalf of the NEMO-3 collaboration.
May 19, 2005UAM-IFT, Madrid : Neutrino physics in underground labs Carlos Pena Garay IAS ~
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
Double Beta Decay Experiments Jeanne Wilson University of Sussex 29/06/05, RAL.
Proposal to join NEMO-3  decay experiment P. Adamson, R. Saakyan, J. Thomas UCL 27 January 2003.
Double Beta Decay - status and future Double beta decay basics Double beta decay basics Experimental challenges Experimental challenges Current experimental.
Neutrino Pre-Town Meeting This is a town meeting: make your voice heard!
Search for Neutrinoless Double Beta Decay with NEMO-3 Zornitza Daraktchieva University College London On behalf of the NEMO3 collaboration PANIC08, Eilat,
0νDBD Experimental Review and 136 Xe With HP Gas at CJPL 季向 东.
SNOLAB Science & Scientific Development Andrew Hime On behalf of the Experiment Advisory Committee Aug. 15, 2005 SNOLAB Surface Building.
Yuri Shitov Imperial College London On behalf of the NEMO Collaboration A search for neutrinoless double beta decay: from NEMO-3 to SuperNEMO Moriond EW.
1 A.Zalewska, Epiphany 2006 Introduction Agnieszka Zalewska Epiphany Conference on Neutrinos and Dark Matter, Epiphany Conference on Neutrinos.
Search for Neutrinoless Double-Beta Decay Werner Tornow Duke University & Triangle Universities Nuclear Laboratory (TUNL) & Kavli-Tokyo Institute of the.
Experiments on Neutrino Nature and Mass
Overview of GERDA simulation activities with MaGe
Prompt Gamma Activation Analysis on 76Ge
Double Beta Decay - status and future
Results in Neutrino Physics & Astrophysics : Highlights
Neutrinos and the Evolution
Status of 100Mo based DBD experiment
Status and perspectives for Double Beta Decay measurements
Overview of the Jiangmen Underground Neutrino Observatory (JUNO)
XAX Can DM and DBD detectors combined?
Double beta decay and Majorana neutrinos
Solar Neutrino Problem
of double beta decay experiments (outside of Japan)
Neutrino Telescope Stefan Schönert (TUM)
Double beta decay and Leptogenesis
Institut de Physique Nucléaire Orsay, France
Search for Lepton-number Violating Processes
Presentation transcript:

Summary of the non-accelerator particle physics workshop session Stefan Schönert, TUM KET Strategie Workshop, Dortmund, 25/26.10.2010

Topics in workshop session Direct neutrino mass measurement: Katrin & beyond - C. Weinheimer Neutrino-less double beta decay: exploring the inverse mass hierarchy - K. Zuber (Cobra), B. Majorovits (GERDA & Majorana) Proton decay & neutrino astrophysics with LENA: L. Oberauer Direct Dark Matter search: Eureca & Xenon: J. Jochum Proton decay & neutrino astrophysics with low-energy extension of IceCube DeepCore ….could not discuss many other interesting things… U. Oberlack  DM plenary talk C. Spiering  KAT/Astroparticle plenary talk

The unknown neutrino properties and how to unravel them Hierarchy ? 13 Mass scale  =  ?  : 13  0 Accelerator Exp. Beta Endpoint Double Beta Decay Reactor Exp. Atmos. Exp. CP phases , , 

The neutrino energy scale & experiments -decay Katrin (Mare, P8) reactor accelerator Kamland 1 keV 10 keV 100 keV 1 MeV Adopted from T. DeYoung astrophysical

After 3 live years: German participants: KIT, Münster, Mainz, Bonn, MPIK After 3 live years:

 C.W.: “beyond 100 meV not fully unfeasible”

The neutrino energy scale & experiments 0 -decay Katrin (Mare, P8) reactor accelerator Kamland 1 keV 10 keV 100 keV 1 MeV Adopted from T. DeYoung astrophysical

0- and 2 decay 2: (A,Z)  (A,Z+2) + 2e- + 2ne odd-odd L=0 even-even 0: (A,Z)  (A,Z+2) + 2e- L=2 2 Experimental signatures: peak at Q = Ee1 + Ee2 - 2me two electrons from vertex production of grand-daughter isotope arbitrary units 0 Energy (keV)

Decay rate and effective neutrino mass Expected decay rate: Phase space integral Nuclear matrix element Q-value of decay Assume leading term is exchange of light Majorana neutrinos Effective neutrino mass (complex) neutrino mixing matrix

0: physics implications 1) Dirac vs. Majorana particle: (i.e. its own anti-particle)?  0  Majorana nature  Majorana  See-Saw mechanism  Majorana  CP violation in MR  higgs + lepton  Leptogenesis  B asymmetry 2) Absolute mass scale:  Hierarchy: degenerate, inverted or normal  (effective) neutrino mass

Predictions from oscillation experiments F.Feruglio, A. Strumia, F. Vissani, NPB 659 90% CL Negligible errors from oscillations; width due to CP phases

Predictions from oscillation experiments KDKC claim: [0.17-0.45] eV (PRD79) F.Feruglio, A. Strumia, F. Vissani, NPB 659 Goal of next generation experiments: ~10 meV 90% CL Negligible errors from oscillations; width due to CP phases

QRPA IBM2 SM (Simkovic et al. PRC 77, 2008) ~4 (Barea and Iachello, PRC 79, 2009) ~3 SM (Caurier et al., PRL 100, 2008) ~4

Overview of Experiments Name Nucleus Mass* Method Location Time line Operational & recently completed experiments CUORICINO Te-130 11 kg bolometric LNGS 2003-2008 NEMO-3 Mo-100/Se-82 6.9/0.9 kg tracko-calo LSM until 2010 Construction funding CUORE 200 kg 2012 EXO-200 Xe-136 160 kg liquid TPC WIPP 2010 GERDA I/II Ge-76 40 kg ionization SNO+ Nd-150 56 kg scintillation SNOlab 2011 Substantial R&D funding / prototyping CANDLES Ca-48 0.35 kg Kamioka 2009 Majorana 26 kg SUSL NEXT 80 kg gas TPC Canfranc 2013 SuperNEMO Se-82 or Nd-150 100 kg 2012 (first mod.) R&D and/or conceptual design CARVEL tbd Solotvina   COBRA Cd-116, Te-130 tbd  DCBA drift chamber EXO gas MOON Mo-100 tracking Oto Other decay modes TGV Cd-106 operational Overview of Experiments *: mass of DBD-isotopes; detector & analysis inefficiencies NOT included! Range: 18% to ~90%

Two new 76Ge Projects: LoI Majorana GERDA @ LNGS ‘Bare’ enrGe array in liquid argon Shield: high-purity liquid Argon / H2O Phase I: 18 kg (HdM/IGEX) / 15 kg nat. Phase II: add ~20 kg new enr. Detectors; total ~40 kg Array(s) of enrGe housed in high-purity electroformed copper cryostat Shield: electroformed copper / lead Initial phase: R&D demonstrator module: Total ~60 kg (30 kg enr.) Physics goals: degenerate mass range Technology: study of bgds. and exp. techniques open exchange of knowledge & technologies (e.g. MaGe MC) intention to merge for O(1 ton) exp. ( inv. Hierarchy) selecting the best technologies tested in GERDA and Majorana LoI

Nov/Dec.’09: Liquid argon fill Jan ’10: Commissioning of cryogenic system Apr/Mai ’10: emergency drainage tests of water tank Apr/Mai ’10: Installation c-lock May ’10: 1st deployment of FE&detector mock-up June ‘10: Commissioning with natGe detector string Soon: start Phase I physics data taking German participants: MPIK, MPP, Tübingen, Dresden, new: TUM

Phases and physics reach 2·1027 (90 % CL) * <24 - 41 meV 2·1026 (90 % CL) * <75 - 129 meV assuming |M0|=2.99-8.99 [Smol&Grab PRC’10] and 86% enrichment 3·1025 (90 % CL)* GERDA Phase II/ Majorana Demonst. KK GERDA Phase III/ Majorana GERDA Phase I *: no event in ROI required for ‘background free’ exp. with E~3.3 keV (FWHM): O(10-3) O(10-4) counts/(kg·y·keV) Background requirement for GERDA/Majorana: Background reduction by factor 102 - 103 required w.r. to precursor exps. Degenerate mass scale O(102 kg·y)  Inverted mass scale O(103 kg·y)

Example for GERDA R&D for a 1 ton experiment: instrumentation of LAr Source run with GERDA LArGe facility Survival ~2 10-4 also R&D with fibres and SiPM GERDA-LArGe Facility @ LNGS

Cobra: R&D for solid state CdZnTe TPC for 0 German participants: Dresden, Dortmund, Freiburg, Erlangen, Hamburg

Liquid Scintillators are well known as neutrino targets Poltergeist ~ 1 t Double-Chooz ~ 10 t KamLAND ~ 1000 t SNO+ ~ 1000 t BOREXINO ~ 300 t 21

The neutrino energy scale & experiments 0 -decay Katrin (Mare, P8) reactor accelerator Kamland Borexino 1 keV 10 keV 100 keV 1 MeV Adopted from T. DeYoung astrophysical

Recent results from Borexino German participants: MPIK, TUM 8-B 7-Be Solar neutrinos: 7-Be, 8-B Geo-neutrinos

The neutrino energy scale & experiments 0 -decay Katrin (Mare, P8) reactor accelerator Double Chooz Kamland Borexino 1 keV 10 keV 100 keV 1 MeV Adopted from T. DeYoung astrophysical

Double Chooz: measurement of 13 Near detector 400 Far detector 1050 m Breaking news: liquid scintillator filling started in October  Physics data taking planned for early 2011 German participants: MPIK, TUM, Tübingen, Aachen, Hamburg

The neutrino energy scale & experiments 0 -decay Katrin (Mare, P8) reactor accelerator Double Chooz Kamland LENA Borexino 1 keV 10 keV 100 keV 1 MeV Adopted from T. DeYoung astrophysical

LENA – Low Energy Neutrino Astronomy ~50 kt liquid scintillator deep underground detector Physics program: Proton Decay Galactic Supernova Burst Diffuse Supernova Neutrino Background Long baseline neutrino oscillations Solar Neutrinos Geo neutrinos Reactor neutrinos Neutrino oscillometry Atmospheric neutrinos Dark Matter indirect search 27

Proton decay in LENA K m, p p e+ p0  1033 y (work progress) High efficiency (68%) for p  K+   5 x 1034 y p e+ p0  1033 y (work progress) K m, p Latest developments: Full event reconstruction under study: “LS as optical TPC” Site study for Pyhäsalmi completed (FP7) White paper under preparation (German contributions to white paper: TUM, Aachen, Hamburg, HGF, …..)

The neutrino energy scale & experiments 0 -decay Katrin (Mare, P8) reactor accelerator Double Chooz Kamland Borexino 1 keV 10 keV 100 keV LENA 1 MeV IceCube Low-E extension Adopted from T. DeYoung astrophysical

indirect search for dark matter Goals: indirect search for dark matter • atmospheric neutrinos: -oscillations • neutrino sources in Southern Hemisphere German contributions: Aachen, MPIK, Wuppertal, Dortmund, Mainz, Zeuthen, Humbold Univ. Berlin

Feasibility study for IceCube DeepCore low-energy extension: A Megaton Cherenkov Ring Imager in Ice Physics goals: proton decay: target channel p → 0 + e+ with τp~1035-1036 y indirect DM • supernova neutrinos hep solar neutrinos • Neutrino physics Atmospheric  long baseline  Existing experimental infrastructure at South pole; experience with string deployment; physics data taking during detector extension goal: 10 MeV energy threshold

Summary & future projects Direct DM search: 1 ton experiment  U. Oberlack’s talk Direct  mass measurement < 100 meV (beyond KATRIN) challenging, however there are new ideas! Neutrino-less double beta decay (0): GERDA phase I/II under preparation  prototype for 1 ton experiment (GERDA/Majorana) Cobra R&D for solid state TPC No time to discuss mentioned: SNO+ participation TU Dresden (Zube) EXO participation of group at TUM (Fierlinger) studies Ba tagging Liquid scintillator projects Borexino: precision measurements of solar-’s, reactor- and geo- detection Double Chooz near detector filling started; far detector to be constructed Proton decay & neutrino astronomy with LENA Water (Ice) Cherenkov Design studay for proton decay & neutrino astrophysics with low-energy extension of IceCube DeepCore