Error-Correcting Codes:

Slides:



Advertisements
Similar presentations
Randomness Conductors Expander Graphs Randomness Extractors Condensers Universal Hash Functions
Advertisements

Hardness Amplification within NP against Deterministic Algorithms Parikshit Gopalan U Washington & MSR-SVC Venkatesan Guruswami U Washington & IAS.
Recovering Data in Presence of Malicious Errors Atri Rudra University at Buffalo, SUNY.
Approximate List- Decoding and Hardness Amplification Valentine Kabanets (SFU) joint work with Russell Impagliazzo and Ragesh Jaiswal (UCSD)
Locally Decodable Codes from Nice Subsets of Finite Fields and Prime Factors of Mersenne Numbers Kiran Kedlaya Sergey Yekhanin MIT Microsoft Research.
List decoding Reed-Muller codes up to minimal distance: Structure and pseudo- randomness in coding theory Abhishek Bhowmick (UT Austin) Shachar Lovett.
Gillat Kol (IAS) joint work with Ran Raz (Weizmann + IAS) Interactive Channel Capacity.
Locally Decodable Codes
Of 14 01/03/2015ISCA-2015: Reliable Meaningful Communication1 Reliable Meaningful Communication Madhu Sudan Microsoft, Cambridge, USA.
Error-Correcting Codes: Progress & Challenges Madhu Sudan Microsoft/MIT 02/17/20101ECC: Progress/Challenges
TAMPER DETECTION AND NON-MALLEABLE CODES Daniel Wichs (Northeastern U)
Codes for Deletion and Insertion Channels with Segmented Errors Zhenming Liu Michael Mitzenmacher Harvard University, School of Engineering and Applied.
1 COMPOSITION PCP proof by Irit Dinur Presentation by Guy Solomon.
The Goldreich-Levin Theorem: List-decoding the Hadamard code
1 Local optimality in Tanner codes June 2011 Guy Even Nissim Halabi.
RAPTOR CODES AMIN SHOKROLLAHI DF Digital Fountain Technical Report.
1 Chapter 1 Introduction. 2 Outline 1.1 A Very Abstract Summary 1.2 History 1.3 Model of the Signaling System 1.4 Information Source 1.5 Encoding a Source.
Codes with local decoding procedures Sergey Yekhanin Microsoft Research.
Generalized Communication System: Error Control Coding Occurs In Right Column. 6.
Linear-Time Encodable and Decodable Error-Correcting Codes Jed Liu 3 March 2003.
1 Verification Codes Michael Luby, Digital Fountain, Inc. Michael Mitzenmacher Harvard University and Digital Fountain, Inc.
15-853Page :Algorithms in the Real World Error Correcting Codes I – Overview – Hamming Codes – Linear Codes.
Of 29 August 4, 2015SIAM AAG: Algebraic Codes and Invariance1 Algebraic Codes and Invariance Madhu Sudan Microsoft Research.
Threshold Phenomena and Fountain Codes Amin Shokrollahi EPFL Joint work with M. Luby, R. Karp, O. Etesami.
11/3/2008Communication & Computation1 A need for a new unifying theory Madhu Sudan MIT CSAIL.
Coding Theory Efficient and Reliable Transfer of Information
1 Private codes or Succinct random codes that are (almost) perfect Michael Langberg California Institute of Technology.
Channel Coding Binit Mohanty Ketan Rajawat. Recap…  Information is transmitted through channels (eg. Wires, optical fibres and even air)  Channels are.
Computer Science Division
1 Asymptotically good binary code with efficient encoding & Justesen code Tomer Levinboim Error Correcting Codes Seminar (2008)
TAMPER DETECTION AND NON-MALLEABLE CODES Daniel Wichs (Northeastern U)
Raptor Codes Amin Shokrollahi EPFL. BEC(p 1 ) BEC(p 2 ) BEC(p 3 ) BEC(p 4 ) BEC(p 5 ) BEC(p 6 ) Communication on Multiple Unknown Channels.
List Decoding Product and Interleaved Codes Prasad Raghavendra Joint work with Parikshit Gopalan & Venkatesan Guruswami.
RELIABLE COMMUNICATION 1 IN THE PRESENCE OFLIMITEDADVERSARIES.
1 List decoding of binary codes: New concatenation-based results Venkatesan Guruswami U. Washington Joint work with Atri Rudra.
Codes for Symbol-Pair Read Channels Yuval Cassuto EPFL – ALGO Formerly: Hitachi GST Research November 3, 2010 IPG Seminar.
RELIABLE COMMUNICATION
Algebraic Property Testing:
Computer Architecture and Assembly Language
Introduction to Information theory
Sublinear-Time Error-Correction and Error-Detection
Locality in Coding Theory
15-853:Algorithms in the Real World
Sublinear-Time Error-Correction and Error-Detection
Communication Amid Uncertainty
General Strong Polarization
Communication Amid Uncertainty
Communication & Computation A need for a new unifying theory
Algebraic Codes and Invariance
General Strong Polarization
Maximally Recoverable Local Reconstruction Codes
Local Error-Detection and Error-correction
A Brief Introduction to Information Theory
Locally Decodable Codes from Lifting
Uncertain Compression
Beer Therapy Madhu Ralf Vote early, vote often
General Strong Polarization
Distributed Compression For Binary Symetric Channels
Imperfectly Shared Randomness
Information-Theoretic Security
Communication Amid Uncertainty
Every set in P is strongly testable under a suitable encoding
Computer Architecture and Assembly Language
How many deleted bits can one recover?
General Strong Polarization
General Strong Polarization
Soft decoding, dual BCH codes, & better -biased list decodable codes
Theory of Information Lecture 13
Zeev Dvir (Princeton) Shachar Lovett (IAS)
Subspace Expanders and Low Rank Matrix Recovery
Presentation transcript:

Error-Correcting Codes: Progress & Challenges Madhu Sudan MIT CSAIL

Communication in presence of noise We are now ready We are not ready Noisy Channel Sender Receiver If information is digital, reliability is critical

Shannon’s Model: Probabilistic Noise Sender Receiver Encode (expand) Noisy Channel Decode (compress?) E : § k ! n D : § n ! k Probabilistic Noise: E.g., every letter flipped to random other letter of w.p. p Focus: Design good Encode/Decode algorithms. §

Hamming Model: Worst-case error Errors: Upto worst-case errors Focus: Code (Note: Not encoding/decoding) Goal: Design code so as to correct any pattern of errors. t C = f E ( x ) : 2 § k g t

Problems in Coding Theory, Broadly Combinatorics: Design best possible error-correcting codes. Probability/Algorithms: Design algorithms correcting random/worst-case errors.

Combinatorial Results Part I (of III): Combinatorial Results

Hamming Notions ¢ ( x ; y ) = j f i g ¢ ( C ) = m i n f g o d e s t a Hamming Distance: Distance of Code: Main question: Asymptotically: ¢ ( x ; y ) = j f i g ¢ ( C ) = m i n x ; y 2 f g o d e s t a c + 1 r . F o u r P a m e t s : L n g h , M l k D i c d p b q = j § . H w y ? W # " L e t R = k n , ± d H o w ; q r l a ?

Simple results B a l ( x ; r ) = f y 2 § j ¢ · g H ( ± ) = c s . t V o Ball: Volume of Ball: Entropy function: Hamming (Packing) Bound: (No code can have too many codewords) B a l ( x ; r ) = f y 2 § n j ¢ · g H q ( ± ) = c s . t V o l ; n ¼ V o l ( q ; n r ) = j B a x i § . S o q k ¢ H ( ± = 2 ) n ·

Simple results (contd.) Gilbert-Varshamov (Greedy) Bound: L e t C : § k ! n b m a x i l o f d s c = ± . T h r u ¡ 1 w v S o q k ¢ H ( ± n ) ¸ . O r : R 1 ¡

Simple results (Summary) For the best code: After fifty years of research … We still don’t know. 1 ¡ H q ( ± ) · R = 2 Which is right?

Binary case: ± = 1 2 ¡ ² , ! . ­ ( ² ) · R ~ O G V / C h e r n o ® L P Case of large distance: Case of small (relative) distance: Case of constant distance: ± = 1 2 ¡ ² , ! . ­ ( ² 2 ) · R ~ O G V / C h e r n o ® L P B o u n d N o b u n d e t r h a R · 1 ¡ ( ) ¢ H ± = 2 . H a m i n g d 2 l o g n ¸ ¡ k ( 1 ) BCH H a m i n g

Binary case (Closer look): For general Can we do better? Twice as many codewords? (won’t change asymptotics of ) Recent progress [Jiang-Vardy]: n ; d # C o d e w r s ¸ 2 n = V l ( ; ¡ 1 ) R ; ± # C o d e w r s ¸ ¢ 2 n = V l ( ; ¡ 1 )

Proof idea of [Jiang-Vardy]: L o k a t H m i n g d s c e ¡ 1 r p h : V e r t i c s = f ; 1 g n , u $ v ¢ ( ) < d C o d e = I n p t s i h g r a G V B o u n d : I . S s i z e ¸ # v r t c / g J i a n g - V r d y : N o t c e # l s m . U s e [ A K S ] F o r g a p h w i t n ( m l # f ) , b u d v y c .

Major questions in binary codes: Give explicit construction meeting GV bound. Is Hamming tight when Is LP Bound tight? I n p a r t i c u l , g v e o d s f ± = 1 2 ¡ ² ( ! ) R ­ . ± ! ? D e s i g n c o d f t a ± , w h r R = 1 ¡ ¢ ( + ) l 2 m < . H a m i n g : c = 1 2

Combinatorics (contd.): q-ary case Fix Surprising result (’80s): (Also a negative surprise: BCH codes only yield ) ± a n d l e t q ! 1 ( h ¯ x ) 1 ¡ ± O ( = l o g q ) · R GV bound Plotkin A l g e b r a i c G o m t y v s d w h R ¸ 1 ¡ ± p q R = 1 ¡ d ( q ) l o g n Not Hamming

Major questions: q-ary case ² H a v e R = 1 ¡ ± f ( q ) ² W h i c s t e f a d y n g u o ( ¢ ) r w l ? ² G i v e a n t u r l x p o f w h y ( q ) = O 1 ² F i x d , a n l e t q ! 1 s o w y h f . H ¡ k g b v ? D p r c 2

Correcting Random Errors Part II (of III): Correcting Random Errors

Recall Shannon ² § - s y m e t r i c h a n l w o p : T ¾ 2 b 1 ¡ d f g f g = ( q ) . ² S h a n o s C d i g T e r m : t R = 1 ¡ H q ( p ) , 8 > . I f R = 1 ¡ H q ( p ) ² , t h e n o r v y x i s E : § ! a d D u c P [ C l ] ¸ . ² C o n v e r s d i g T h m : a t R = 1 ¡ H q ( p ) + , f > . ² S o n m y s t e r i ?

Constructive versions ² S h a n o s f u c t i : E p k e d r m , D b . ² C a n w e g t p o l y m i c u b E ; D ? ² [ F o r n e y 6 ] : G a v p l m i t c u b E ; D . ( U s ± d g f R - S , ) ² D i d n t c o m p l e y s a f r . W h ? ² [ S p i e l m a n 9 4 + B r g - Z o 7 ] L t c u b E ; D . ( s f ) ² [ B e r o u t a l . 9 2 ] T b c d s + i f p g n N h m ( M x / )

What is satisfaction? ² P r a c t i l n e s : I o g f p m . = 1 , q 2 Articulated by [Luby,Mitzenmacher,Shokrollahi,Spielman ’96] ² P r a c t i l n e s : I o g f p m . = 1 , q 2 D d b y ¡ 6 W h k ? ² F o r [ n e y ] a d s u c : ¡ D i g m p l x t ( 1 = H ) k . R 9 % f ¸ 2 ² T h e r i g t q u s o n : ¡ G d c m ¢ p l y ( 1 = ) v ; w H R .

Current state of the art Luby et al.: Propose study of codes based on irregular graphs (“Irregular LDPC Codes”).

LDPC Codes n l e f t v r i c s 1 n ¡ k r i g h t v e c s 1 C o d e w r 1 C o d e w r = / 1 a s i g n m t l f h b v c p y . 1 D e ¯ n s E : f ; 1 g k ! . 1 1 R i g h t v e r c s a p y k . G l o w d n H L - D P C

LDPC Codes D e c o d i n g I t u : P a r y h k f l s ) m b p . F w 1 1 1 1 [ G a l g e r 6 3 . S i p s - m n 9 2 ] : C o c t ­ ( 1 ) f 1 C u r e n t h o p : P i c k g d s a f l y w / m 1

Current state of the art Luby et al.: Propose study of codes based on irregular graphs (“Irregular LDPC Codes”). No theorems so far for erroneous channels. Strong analysis for (much) simpler case of erasure channels (symbols are erased); decoding time (Easy to get “composition” based algorithms with decoding time ) Do have some proposals for errors as well (with analysis by Luby et al., Richardson & Urbanke), but none known to converge to Shannon limit. O ( n l o g 1 = ² ) O ( n ¢ p o l y 1 = ² )

Still open ² T h e r i g t q u s o n : ¡ G d c m ¢ p l y ( 1 = ) v ; w Articulated by [Luby,Mitzenmacher,Shokrollahi,Spielman ’96] ² T h e r i g t q u s o n : ¡ G d c m ¢ p l y ( 1 = ) v ; w H R .

Correcting Adversarial Errors Part III: Correcting Adversarial Errors

Motivation: As notions of communication/storage get more complex, modeling error as oblivious (to message/encoding/decoding) may be too simplistic. Need more general models of error + encoding/decoding for such models. Most pessimistic model: errors are worst-case.

Gap between worst-case & random errors In Shannon model, with binary channel: Can correct upto 50% (random) errors. In Hamming model, for binary channel: Code with more than n codewords has distance at most 50%. So it corrects at most 25% worst-case errors. Need new approaches to bridge gap. ( 1 ¡ = q f r a c t i o n e s , h l - y . ) ( 1 2 ¡ = q ) f r a c t i o n e s - y .

Approach: List-decoding Main reason for gap between Shannon & Hamming: The insistence on uniquely recovering message. List-decoding: Relaxed notion of recovery from error. Decoder produces small list (of L) codewords, such that it includes message. Code is (p,L) list-decodable if it corrects p fraction error with lists of size L.

List-decoding Main reason for gap between Shannon & Hamming: The insistence on uniquely recovering message. List-decoding [Elias ’57, Wozencraft ’58]: Relaxed notion of recovery from error. Decoder produces small list (of L) codewords, such that it includes message. Code is (p,L) list-decodable if it corrects p fraction error with lists of size L.

What to do with list? Probabilistic error: List has size one w.p. nearly 1 General channel: Need side information of only O(log n) bits to disambiguate [Guruswami ’03] (Alt’ly if sender and receiver share O(log n) bits, then they can disambiguate [Langberg ’04]). Computationally bounded error: Model introduced by [Lipton, Ding Gopalan L.] List-decoding results can be extended (assuming PKI and some memory at sender) [Micali et al.]

List-decoding: State of the art [Zyablov-Pinsker/Blinovskii – late 80s] Matches Shannon’s converse perfectly! (So can’t do better even for random error!) But [ZP/B] non-constructive! T h e r x i s t c o d f a 1 ¡ H q ( p ) ² ; O - l b .

Algorithms for List-decoding Not examined till ’88. First results: [Goldreich-Levin] for “Hadamard’’ codes (non-trivial in their setting). More recent work: [S.’96, Shokrollahi-Wasserman ’98, Guruswami-S.’99, Parvaresh-Vardy ’05, Guruswami-Rudra ’06] – Decode algebraic codes. [Guruswami-Indyk ’00-’02] – Decode graph-theoretic codes. [TaShma-Zuckerman ’02, Trevisan ’03] – Propose new codes for list-decoding.

Results in List-decoding Q-ary case: Binary case: ² [ G u r s w a m i - R d 6 ] C o e f t ¡ c n g 1 h q = ( ) . C o n v e r g s t S h a c p i y ! 9 C o d e s f r a t ² c i n g 1 2 ¡ . ¡ c = 4 : G u r s w a m i e t l . 2 ¡ c ! 3 : I m p l i e d b y P a r v s h - V 5

Few lines about Guruswami-Rudra Code = Collated Reed-Solomon Code + Concatenation. A l p h a b e t § = F C q ; ! 1 , c o n s . C o d e m a p s § K ! N f r ¼ q = . M e s a g : D r C ¢ K p o l y n m i v F q . E n c o d i g : F r s t p a q e l S ; 1 N , w h j = ¢ C . y f ® ¡ 2 P ( )

Few lines about Guruswami-Rudra Special properties: Is this code combinatorially good? Algorithmically good!! (uses ideas from [S’96,GS’98,PV’05 + new ones]. Can concatenate to reduce alphabet size. o f K , S i s ² S i = f ® C ; ° ¢ : ¡ 1 g . ² ° s a t i ¯ e x q = m o d h ( ) f r u c b l g C K . ² D o B a l s f r d i u ( 1 ¡ ) ¢ N K h v e w c ?

Few lines about Guruswami-Rudra Warnings: K, N, partition all very special. A l p h a b e t § = F C q ; ! 1 , c o n s . C o d e m a p s § K ! N f r ¼ q = . M e s a g : D r C ¢ K p o l y n m i v F q . Encoding: \\ \indent First partition $\F_q$ into {\red special} sets $S_0,S_1,\ldots,S_N$, \\ \indent \indent with $|S_1| = \cdots = |S_N| = C$. \\ \indent Say $S_1 = \{\alpha_1,\ldots,\alpha_C\}$, $S_2 = \{\alpha_{C+1},\ldots,\alpha_{2C}\}$ etc.\\ \indent Encoding of $P$\\ \indent \indent $\langle \langle P(x_1),\ldots,P(x_C) \rangle, \langle P(x_{C+1}),\ldots,P(x_{2C}) \rangle \cdots \rangle$

Major open question ² C o n s t r u c ( p ; O 1 ) l i - d e a b y f ¡ H w h m g . ² N o t e : I f r u n i g m s p l y ( 1 = ) h a d b w .

Conclusions Many mysteries in combinatorial setting. Significant progress in algorithmic setting, but many important open questions as well.