MICROWAVE OBSERVATION OF THE VAN DER WAALS COMPLES O2-CO

Slides:



Advertisements
Similar presentations
Spectra, Structures, and Dynamics of Weakly Bound Clusters from Dimers to Nonamers Wolfgang Jäger Department of Chemistry, University of Alberta.
Advertisements

The high resolution spectrum of the Ar  C 2 H 2 complex C. Lauzin, a K. Didriche, a M. Herman, a and L. H. Coudert b a Université Libre de Brxuxelles,
Infrared spectra of OCS-C 6 H 6, OCS-C 6 H 6 -He and OCS-C 6 H 6 -Ne van der Waals Complexes M. Dehghany, J. Norooz Oliaee, Mahin Afshari, N. Moazzen-Ahmadi.
HIGH RESOLUTION INFRARED SPECTROSCOPY OF N 2 O-C 4 H 2 AND CS 2 −C 2 D 2 DIMERS MAHDI YOUSEFI S. SHEYBANI-DELOUI JALAL NOROOZ OLIAEE BOB MCKELLAR NASSER.
Rotational Spectra of Methylene Cyclobutane and Argon-Methylene Cyclobutane Wei Lin, Jovan Gayle Wallace Pringle, Stewart E. Novick Department of Chemistry.
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
The inversion motion in the Ne – NH 3 van der Waals dimer studied via microwave spectroscopy Laura E. Downie, Julie M. Michaud and Wolfgang Jäger Department.
PURE ROTATIONAL SPECTRA OF THE REACTION PRODUCTS OF LASER ABLATED THORIUM METAL AND OXYGEN MOLECULES ENTRAINED WITHIN SUPERSONIC EXPANSIONS OF NOBLE GASES.
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
Daniel P. Zaleski, Hansjochen Köckert, Susanna L. Stephens, Nick R. Walker School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne,
Spectroscopy of He-, Ne-, and Ar - C 2 D 2 complexes Mojtaba Rezaei, Nasser Moazzen-Ahmadi Department of Physics and Astronomy University of Calgary A.R.W.
Rotational spectra of molecules in small Helium clusters: Probing superfluidity in finite systems F. Paesani and K.B. Whaley Department of Chemistry and.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
High Resolution Microwave Spectra of He N – and (H 2 ) N – Linear Molecule Clusters Wolfgang Jäger Department of Chemistry, University of Alberta, Edmonton,
MW Spectroscopy of  -Alanine and a Search in Orion-KL Shiori Watanabe ( Kyoto Univ. JAPAN ), Satoshi Kubota, Kentarou Kawaguchi ( Okayama Univ. JAPAN.
D. Zhao, K.D. Doney, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands T he 3 μm Infrared Spectra.
The rotational spectrum of acrylonitrile to 1.67 THz Zbigniew Kisiel, Lech Pszczółkowski Institute of Physics, Polish Academy of Sciences Brian J. Drouin,
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) SPECTRUM OF BROMOPERFLUOROACETONE NICHOLAS FORCE, DAVID JOSEPH GILLCRIST, CASSANDRA.
Microwave Spectroscopy and Internal Dynamics of the Ne-NO 2 Van der Waals Complex Brian J. Howard, George Economides and Lee Dyer Department of Chemistry,
Laser spectroscopy of a halocarbocation: CH 2 I + Chong Tao, Calvin Mukarakate, and Scott A. Reid Department of Chemistry, Marquette University 61 st International.
CHIRPED PULSE AND CAVITY FT MICROWAVE SPECTROSCOPY OF THE HCOOH – N(CH 3 ) 3 WEAKLY BOUND COMPLEX Rebecca B. Mackenzie, Christopher T. Dewberry, and Kenneth.
Spectroscopic and Ab Initio Studies of the Open-Shell Xe-O 2 van der Waals Complex Qing Wen and Wolfgang Jäger Department of Chemistry, University of Alberta,
Jun 18th rd International Symposium on Molecular Spectroscopy Microwave spectroscopy o f trans-ethyl methyl ether in the torsionally excited state.
Rotational Spectra of N 2 O-H 2 Complexes University of Alberta Jen Nicole Landry and Wolfgang Jäger June 23, 2005.
Spectroscopy of (He) N -Molecule Clusters: Tracing the Onset of Superfluidity Yunjie Xu and Wolfgang Jäger Department of Chemistry, University of Alberta,
Infrared Spectroscopy of the H2/D2-O2 van der Waals Complexes
Jet-cooled infrared laser spectroscopy in the umbrella 2 vibration region of NH3: improving the potential energy surface model of the NH3-Ar van der Waals.
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
Christopher T. Dewberry, Garry S
MICROWAVE OBSERVATION OF THE O2-CONTAINING COMPLEX, O2-HCl
CO2 dimer: Five intermolecular vibrations observed via infrared combination bands Jalal Norooz Oliaee, Mehdi Dehghany, Mojtaba Rezaei, Nasser Moazzen-Ahmadi.
CAVITY AND CHIRPED PULSE ROTATIONAL SPECTRUM OF THE LASER ABLATION SYNTHESIZED, OPEN-SHELL MOLECULE TIN MONOCHLORIDE, SnCl G. S. GRUBBS II, DANIEL J. FROHMAN,
A Chirped Pulse Fourier Transform Microwave (CP-FTMW) Spectrometer with Laser Ablation Source to Search for Actinide-Containing Molecules and Noble Metal.
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
Infrared spectrum of CO – O2 a new weakly bound complex
Characterisation and Control of Cold Chiral Compounds
1Kanagawa Institute of Technology 3Georgia Southern University
OCS trimer and tetramer: Calculated structures and infrared spectra
MICROWAVE FREQUENCY TRANSITIONS REQUIRING LASER ABLATED URANIUM METAL DISCOVERED USING CHIRP-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY B. E. Long.
INFRARED SPECTROSCOPY OF DISILICON-CARBIDE, Si2C
L. Evangelisti,a,c C. Perez,b,c B.H. Patec
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
The CP-FTMW Spectrum of Bromoperfluoroacetone
A. Barbe, M. R. De Backer-Barilly, Vl. G. Tyuterev, D. Romanini1, S
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) INVESTIGATIONS INTO 3-BROMO-1,1,1,2,2-PENTAFLUOROPROPANE; A MOLECULE OF ATMOSPHERIC.
Chirped pulse rotational spectroscopy
3-Dimensional Intermolecular Potential Energy Surface of Ar-SH(2Pi)
Chirped Pulse Microwave Spectroscopy on Methyl Butanoate
Acetaldehyde: Into the Submillimeter
FT Microwave and MMW Spectroscopy of the H2-DCN Molecular Complex
The Effect of Protic Acid Identity on the Structures of Complexes with Vinyl Chloride: Fourier Transform Microwave Spectroscopy and Molecular Structure.
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
Bob Grimminger and Dennis Clouthier
Jinjun Liu, Ming-Wei Chen, John T. Yi,
(Kobe Univ. ) Takumi Nakano, Ryo Yamamoto, Shunji Kasahara
G. S. Grubbs IIa, Derek S. Frankb, Daniel A. Obenchainb, S. A
Angela Y. Chung, Eric A. Arsenault, and Stewart E. Novick
Terahertz VRT Spectroscopy of the Water Tetramer-d8: Combined Analysis of Vibrational Bands at 4.1 THz and 2.0 THz Wei Lin, Jia-xiang Han, Lynelle K.
RH12, 70th International Symposium on Molecular Spectroscopy
Strange combination band of the cross-shaped complex CO2 – CS2
Aaron M. Pejlovas and Dr. Stephen G. Kukolich
Fourier Transform Infrared Spectral
AN INVESTIGATION OF THE DIPOLE FORBIDDEN TRANSITION EFFECTS IN BROMOFLUOROCARBONS AS IT PERTAINS TO 3-BROMO-1,1,1,2,2-PENTAFLUOROPROPANE USING CP-FTMW.
ASSIGNMENT OF THE PERFLUOROPROPIONIC ACID-FORMIC ACID COMPLEX AND THE DIFFICULTIES OF INCLUDING HIGH Ka TRANSITIONS Daniel A. Obenchain, Eric A. Arsenault,
Daniel A. Obenchain, Derek S. Frank, Stewart E. Novick,
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Elias M. NEEMAN and Thérèse R. HUET
Presentation transcript:

MICROWAVE OBSERVATION OF THE VAN DER WAALS COMPLES O2-CO F. E. Marshall, Thomas D. Persinger, David Joseph Gillcrist, Nicole Moon, Steve Ndengue, Richard Dawes, and G. S. Grubbs II 71st International Symposium on Molecular Spectroscopy June 20-24, 2016, Urbana-Champaign, IL, USA; WG14

O2 Complexes Are Rare Making up 21% of our atmosphere, O2 complex studies are quite rare- Only 5 different complexes mentioned on Stew Novick’s Bibliography1: Ar-O2, DCl-O2, SO2-O2, N2O-O2, and O2-O2 Unfinished work of O2-OCS by Brian Howard2 and H2O-O2 by Endo and coworkers3 Why??? WA10: INFRARED SPECTRUM OF CO-O2, A 'NEW' WEAKLY-BOUND COMPLEX; Bob McKellar, A. J. Barclay, K. H. Michaelian, Nasser Moazzen-Ahmadi Stew Novick. BIBLIOGRAPHY OF ROTATIONAL SPECTRA OF WEAKLY BOUND COMPLEXES. https://wesfiles.wesleyan.edu/home/snovick/SN_webpage/vdw.pdf Brian Howard, Private Communication. Y. Kasai, E. Dupuy, R. Saito, K. Hashimoto, A. Sabu, S. Kondo, Y. Sumiyoshi, and Y. Endo, Atmos. Chem. Phys., 11 (2011), 8607-8612

Chirp Results 1% CO, 5% O2 in He 1 atm backing pressure 20k FIDs 500 MHz Chirp (17-17.5 GHz) 50k FIDs 500 MHz Chirp (16.5-17 GHz)

Cavity Results 1% CO, 5% O2 in He (different gas mix) 2 atm backing pressure No Helmholtz Coils No splitting!!! 1500 nozzle pulses 74:1 S:N

O2-OCS Comparison Brian Howard, Private Communication and B. J. Howard, 57th ISMS TI01 Splitting?! Needed Helmholtz coils to null field! Complicated Hamiltonian due to O2 dynamics! 303 - 212

O2-OCS Hamiltonian JKa Kc - JKa Kc Observed/MHz Obs-calc/MHz 111-000 6290.9819 0.366 212-101 8858.7318 -0.100 313-202 11167.1797 -0.149 414-303 13314.6086 0.303 515-404 15432.7188 -0.020 413-404 6954.8380 -0.181 514-505 9119.3940 0.235 303-212 6569.2750 0.104 404-313 9987.7293 0.610 505-414 13247.5926 -0.311 606-515 16312.7983   221-212 10523.2879 0.308 322-313 11318.6716 0.159 423-414 12397.7580 0.175 524-515 13763.1647 -0.187 220-211 8891.6613 0.080 321-312 8271.8219 0.073 422-413 7782.8823 0.213 523-514 7635.9779 -0.106 221-110 15678.0159 -0.432 220-111 16315.8414 -0.269 JKa Kc - JKa Kc Observed/MHz Obs-calc/MHz 413-322 5623.8940 0.268 514-423 9969.2286 -0.251 202101 6239.4074 -0.112 303202 9188.5974 0.114 404-303 11966.3112 0.346 505-404 14595.8910 -0.353 606-505 17149.6268   212-111 5722.6339 -0.593 313-212 8547.8578 -0.159 414-313 11336.0273 0.568 515-414 14084.4206 0.021 211-110 6856.2764 -0.493 312-211 10237.231 -0.310 413-312 13551.6455 0.333 514-413 16760.4481 0.064 321-220 9617.3953 -0.313 322-221 9343.2419 -0.307 423-322 12415.1131 0.583 422-321 13062.7037 0.471 523-422 16613.5429 -0.255 524-423 15449.8278 -0.340 A /MHz 6786.1418(24) B /MHz 1861.2288(1) C /MHz 1343.3031(1) DJ /MHz -0.200413(2) DJK /MHz 6.70436(2) DK /MHz 112.1333(2) d1 /MHz -0.014448(3)    90   /GHz 83.3  /MHza 18.3 Cannot fit these using standard semirigid Hamiltonian; Tried to recreate Howard’s assignments in Pickett’s code with no luck

O2-H2O Comparison Y. Kasai, E. Dupuy, R. Saito, K. Hashimoto, A. Sabu, S. Kondo, Y. Sumiyoshi, and Y. Endo, Atmos. Chem. Phys., 11 (2011), 8607-8612 No Paramagnetic Splitting?

O2-H2O Hamiltonian Y. Kasai, E. Dupuy, R. Saito, K. Hashimoto, A. Sabu, S. Kondo, Y. Sumiyoshi, and Y. Endo, Atmos. Chem. Phys., 11 (2011), 8607-8612 Using SPCAT, we can predict these transitions with obs-calc for O2-H2O

O2-CO? Some preliminary calculations indicated the following structure: Parameter Value (MHz) A 28626 B 2902.4 C 2635.2 Calculations ran at uMP2/aug-cc-pVQZ level Transitions needed each component of the O2-CO in He mixture. The transition did not appear with previously tested O2-OCS molecule. Furthermore, He-CO was not visible when this mix was made.

O2-CO Theory (Dawes Group) GLOBAL MINIMUM, R=3.46Å LOCAL MINIMUM, R=3.82Å

O2-CO Theory (Dawes Group) GLOBAL MINIMUM, R=3.46Å, -119.3cm-1 LOCAL MINIMUM, R=3.82Å, -112.8cm-1 He-CO is predicted to be -22.9cm-1,a a. C. E. Chuaqui, R. J. Le Roy, A. R. W. McKeller, JCP 101 (1994) 39.

Interesting Developments Brian Howard’s Private Communication says that the spin is linked to the Ka term in O2-OCS. These levels will not be split if Ka=0. Prediction with λ=59.5 GHz as in free O2 gives a close Ka=0 transition to our 17326 line with reasonable intensity. 303 – 202?

Acknowledgements GSGII: Missouri S&T Startup; UM Research Board Grant Dawes: NSF  CHE-1300945