MICROWAVE OBSERVATION OF THE VAN DER WAALS COMPLES O2-CO F. E. Marshall, Thomas D. Persinger, David Joseph Gillcrist, Nicole Moon, Steve Ndengue, Richard Dawes, and G. S. Grubbs II 71st International Symposium on Molecular Spectroscopy June 20-24, 2016, Urbana-Champaign, IL, USA; WG14
O2 Complexes Are Rare Making up 21% of our atmosphere, O2 complex studies are quite rare- Only 5 different complexes mentioned on Stew Novick’s Bibliography1: Ar-O2, DCl-O2, SO2-O2, N2O-O2, and O2-O2 Unfinished work of O2-OCS by Brian Howard2 and H2O-O2 by Endo and coworkers3 Why??? WA10: INFRARED SPECTRUM OF CO-O2, A 'NEW' WEAKLY-BOUND COMPLEX; Bob McKellar, A. J. Barclay, K. H. Michaelian, Nasser Moazzen-Ahmadi Stew Novick. BIBLIOGRAPHY OF ROTATIONAL SPECTRA OF WEAKLY BOUND COMPLEXES. https://wesfiles.wesleyan.edu/home/snovick/SN_webpage/vdw.pdf Brian Howard, Private Communication. Y. Kasai, E. Dupuy, R. Saito, K. Hashimoto, A. Sabu, S. Kondo, Y. Sumiyoshi, and Y. Endo, Atmos. Chem. Phys., 11 (2011), 8607-8612
Chirp Results 1% CO, 5% O2 in He 1 atm backing pressure 20k FIDs 500 MHz Chirp (17-17.5 GHz) 50k FIDs 500 MHz Chirp (16.5-17 GHz)
Cavity Results 1% CO, 5% O2 in He (different gas mix) 2 atm backing pressure No Helmholtz Coils No splitting!!! 1500 nozzle pulses 74:1 S:N
O2-OCS Comparison Brian Howard, Private Communication and B. J. Howard, 57th ISMS TI01 Splitting?! Needed Helmholtz coils to null field! Complicated Hamiltonian due to O2 dynamics! 303 - 212
O2-OCS Hamiltonian JKa Kc - JKa Kc Observed/MHz Obs-calc/MHz 111-000 6290.9819 0.366 212-101 8858.7318 -0.100 313-202 11167.1797 -0.149 414-303 13314.6086 0.303 515-404 15432.7188 -0.020 413-404 6954.8380 -0.181 514-505 9119.3940 0.235 303-212 6569.2750 0.104 404-313 9987.7293 0.610 505-414 13247.5926 -0.311 606-515 16312.7983 221-212 10523.2879 0.308 322-313 11318.6716 0.159 423-414 12397.7580 0.175 524-515 13763.1647 -0.187 220-211 8891.6613 0.080 321-312 8271.8219 0.073 422-413 7782.8823 0.213 523-514 7635.9779 -0.106 221-110 15678.0159 -0.432 220-111 16315.8414 -0.269 JKa Kc - JKa Kc Observed/MHz Obs-calc/MHz 413-322 5623.8940 0.268 514-423 9969.2286 -0.251 202101 6239.4074 -0.112 303202 9188.5974 0.114 404-303 11966.3112 0.346 505-404 14595.8910 -0.353 606-505 17149.6268 212-111 5722.6339 -0.593 313-212 8547.8578 -0.159 414-313 11336.0273 0.568 515-414 14084.4206 0.021 211-110 6856.2764 -0.493 312-211 10237.231 -0.310 413-312 13551.6455 0.333 514-413 16760.4481 0.064 321-220 9617.3953 -0.313 322-221 9343.2419 -0.307 423-322 12415.1131 0.583 422-321 13062.7037 0.471 523-422 16613.5429 -0.255 524-423 15449.8278 -0.340 A /MHz 6786.1418(24) B /MHz 1861.2288(1) C /MHz 1343.3031(1) DJ /MHz -0.200413(2) DJK /MHz 6.70436(2) DK /MHz 112.1333(2) d1 /MHz -0.014448(3) 90 /GHz 83.3 /MHza 18.3 Cannot fit these using standard semirigid Hamiltonian; Tried to recreate Howard’s assignments in Pickett’s code with no luck
O2-H2O Comparison Y. Kasai, E. Dupuy, R. Saito, K. Hashimoto, A. Sabu, S. Kondo, Y. Sumiyoshi, and Y. Endo, Atmos. Chem. Phys., 11 (2011), 8607-8612 No Paramagnetic Splitting?
O2-H2O Hamiltonian Y. Kasai, E. Dupuy, R. Saito, K. Hashimoto, A. Sabu, S. Kondo, Y. Sumiyoshi, and Y. Endo, Atmos. Chem. Phys., 11 (2011), 8607-8612 Using SPCAT, we can predict these transitions with obs-calc for O2-H2O
O2-CO? Some preliminary calculations indicated the following structure: Parameter Value (MHz) A 28626 B 2902.4 C 2635.2 Calculations ran at uMP2/aug-cc-pVQZ level Transitions needed each component of the O2-CO in He mixture. The transition did not appear with previously tested O2-OCS molecule. Furthermore, He-CO was not visible when this mix was made.
O2-CO Theory (Dawes Group) GLOBAL MINIMUM, R=3.46Å LOCAL MINIMUM, R=3.82Å
O2-CO Theory (Dawes Group) GLOBAL MINIMUM, R=3.46Å, -119.3cm-1 LOCAL MINIMUM, R=3.82Å, -112.8cm-1 He-CO is predicted to be -22.9cm-1,a a. C. E. Chuaqui, R. J. Le Roy, A. R. W. McKeller, JCP 101 (1994) 39.
Interesting Developments Brian Howard’s Private Communication says that the spin is linked to the Ka term in O2-OCS. These levels will not be split if Ka=0. Prediction with λ=59.5 GHz as in free O2 gives a close Ka=0 transition to our 17326 line with reasonable intensity. 303 – 202?
Acknowledgements GSGII: Missouri S&T Startup; UM Research Board Grant Dawes: NSF CHE-1300945