Paolo Tuccella, Gabriele Curci, Suzanne Crumeyrolle, Guido Visconti

Slides:



Advertisements
Similar presentations
Chantier Méditerranée – Aix-En-Provence – Nov /17 1. Main regional stakes - Ambient air quality - Chemistry-climate interactions - Impact on ecosystems.
Advertisements

R. L. Buckley and C. H. Hunter Atmospheric Technologies Group Savannah River National Laboratory Recent Improvements to an Advanced Atmospheric Transport.
ESF- MedCLIVAR Workshop Climate Change Modeling for the Mediterranean region, ICTP, Trieste, Italy, Oct 2008 Regional air quality decadal simulations.
Research Questions How is the chemical composition* of the aerosol burden in Northern Europe modulated? –What are the chemical properties of the burden.
The University of Reading Helen Dacre The Prediction And Observation Of Volcanic Ash Clouds During The Eyjafjallajökull Eruption Helen Dacre and Alan Grant.
The University of Reading Helen Dacre AGU Dec 2008 Boundary Layer Ventilation by Convection and Coastal Processes Helen Dacre, Sue Gray, Stephen Belcher.
The University of Reading Helen Dacre AMS 2010 Air Quality Forecasting using a Numerical Weather Prediction Model ETEX Surface Measurement Sites.
SOLAS Dust workshop (Reading) Overview of dust modelling from Leeds global aerosol group Graham Mann, Ken Carslaw, Dominick Spracklen,
© University of Reading Richard Allan Department of Meteorology, University of Reading Thanks to: Jim Haywood and Malcolm.
Some recent studies using Models-3 Ian Rodgers Presentation to APRIL meeting London 4 th March 2003.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Climate-Chemistry Interactions - User Requirements Martin Dameris DLR-Institut für.
Use of Lidar Backscatter to Determine the PBL Heights in New York City, NY Jia-Yeong Ku, Chris Hogrefe, Gopal Sistla New York State Department of Environmental.
Whitecaps, sea-salt aerosols, and climate Magdalena D. Anguelova Physical Oceanography Dissertation Symposium College of Marine Studies, University of.
Simulating isoprene oxidation in GFDL AM3 model Jingqiu Mao (NOAA GFDL), Larry Horowitz (GFDL), Vaishali Naik (GFDL), Meiyun Lin (GFDL), Arlene Fiore (Columbia.
Simulating the Impacts of Marine Organic Emissions on Global Atmospheric Chemistry and Climate using an Online-Coupled Meteorology and Chemistry Model.
INDIRECT AEROSOL EFFECTS
Incorporation of the Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (MADRID) into CMAQ Yang Zhang, Betty K. Pun, Krish Vijayaraghavan,
Improving the Representation of Atmospheric Chemistry in WRF William R. Stockwell Department of Chemistry Howard University.
Title EMEP Unified model Importance of observations for model evaluation Svetlana Tsyro MSC-W / EMEP TFMM workshop, Lillestrøm, 19 October 2010.
Sensitivity of cloud droplet nucleation to kinetic effects and varying updraft velocity Ulrike Lohmann, Lisa Phinney and Yiran Peng Department of Physics.
Brief review of my previous work in Beijing Xiaofeng Wang Directed by : Guoguang Zheng Huiwen Xue 1.
Clouds and Climate: Forced Changes to Clouds SOEE3410 Ken Carslaw Lecture 4 of a series of 5 on clouds and climate Properties and distribution of clouds.
The AIRPACT-3 Photochemical Air Quality Forecast System: Evaluation and Enhancements Jack Chen, Farren Thorpe, Jeremy Avis, Matt Porter, Joseph Vaughan,
Air Quality-Climate Interactions Aijun Xiu Carolina Environmental Program.
The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology The Effect of Turbulence on Cloud Microstructure,
Ultrafine Particles and Climate Change Peter J. Adams HDGC Seminar November 5, 2003.
Implementation of Sulfate and Sea-Salt Aerosol Microphysics in GEOS-Chem Hi everyone. My name is Win Trivitayanurak… I’m a PhD student working with Peter.
Clouds and Climate: Forced Changes to Clouds SOEE3410 Ken Carslaw Lecture 4 of a series of 5 on clouds and climate Properties and distribution of clouds.
Implementing Online Marine Organic Aerosol Emissions into GEOS-Chem Implementing Online Marine Organic Aerosol Emissions into GEOS-Chem NASA Ames Research.
Effects of size resolved aerosol microphysics on photochemistry and heterogeneous chemistry Gan Luo and Fangqun Yu ASRC, SUNY-Albany
Next Gen AQ model Need AQ modeling at Global to Continental to Regional to Urban scales – Current systems using cascading nests is cumbersome – Duplicative.
CMAQ (Community Multiscale Air Quality) pollutant Concentration change horizontal advection vertical advection horizontal dispersion vertical diffusion.
Aerosol Microphysics: Plans for GEOS-CHEM
Modelling the Canadian Arctic and Northern Air Quality using GEM-MACH Wanmin Gong and Stephen Beagley Science and Technology Branch Environment Canada.
28 Jan 1815 UTC2135 UTC Clear patches due to canyon drainage/ Exchange from Utah Valley? PCAPS IOP January 2011.
Clouds, Aerosols and Precipitation GRP Meeting August 2011 Susan C van den Heever Department of Atmospheric Science Colorado State University Fort Collins,
Improving Black Carbon (BC) Aging in GEOS-Chem Based on Aerosol Microphysics: Constraints from HIPPO Observations Cenlin He Advisers: Qinbin Li, Kuo-Nan.
1 Using Hemispheric-CMAQ to Provide Initial and Boundary Conditions for Regional Modeling Joshua S. Fu 1, Xinyi Dong 1, Kan Huang 1, and Carey Jang 2 1.
Aerosols in WRF-CHEM Eric Stofferahn George Mason University _07:00:00 (UTC)
Melanie Follette-Cook Christopher Loughner (ESSIC, UMD) Kenneth Pickering (NASA GSFC) CMAS Conference October 27-29, 2014.
Microphysical simulations of large volcanic eruptions: Pinatubo and Toba Jason M. English National Center for Atmospheric Research (LASP/University of.
The effect of pyro-convective fires on the global troposphere: comparison of TOMCAT modelled fields with observations from ICARTT Sarah Monks Outline:
An air quality information system for cities with complex terrain based on high resolution NWP Viel Ødegaard, r&d department.
Representation of Sea Salt Aerosol in CAM coupled with a Sectional Aerosol Microphysical Model CARMA Tianyi Fan, Owen Brian Toon LASP/ATOC, University.
AEROSOL & CLIMATE ( IN THE ARCTIC) Pamela Lehr METEO 6030 Spring 2006
On the interplay between upper and ground levels dynamics and chemistry in determining the surface aerosol budget Gabriele Curci 1, L. Ferrero 2, P. Tuccella.
Studying impacts of the Saharan Air Layer on hurricane development using WRF-Chem/EnKF Jianyu(Richard) Liang Yongsheng Chen 6th EnKF Workshop York University.
Cloud-mediated radiative forcing of climate due to aerosols simulated by newly developed two-way coupled WRF-CMAQ during 2006 TexAQS/GoMACCS over the Gulf.
Dust aerosols in NU-WRF – background and current status Mian Chin, Dongchul Kim, Zhining Tao.
Using WRF-Chem to understand interactions between synoptic and microphysical variability during VOCALS Rhea George, Robert Wood University of Washington.
AEROCOM AODs are systematically smaller than MODIS, with slightly larger/smaller differences in winter/summer. Aerosol optical properties are difficult.
Understanding The Effect Of Anthropogenic Aerosol Weekly Cycles Upon The Climate Using A Global Model Of Aerosol Processes (GLOMAP) Introduction GLOMAP.
Towards parameterization of cloud drop size distribution for large scale models Wei-Chun Hsieh Athanasios Nenes Image source: NCAR.
Chien Wang Massachusetts Institute of Technology A Close Look at the Aerosol-Cloud Interaction in Tropical Deep Convection.
PAPERSPECIFICS OF STUDYFINDINGS Kohler, 1936 (“The nucleus in and the growth of hygroscopic droplets”) Evaporate 2kg of hoar-frost and determined Cl content;
Aerosol simulation with coupled meteorology-radiation- chemistry model WRF/Chem over Europe.
Aerosol 1 st indirect forcing in the coupled CAM-IMPACT model: effects from primary-emitted particulate sulfate and boundary layer nucleation Minghuai.
Many models show a substantial drop off in droplet number away from the coast as is observed. Models’ vertical distribution of droplet number is surprisingly.
What are the causes of GCM biases in cloud, aerosol, and radiative properties over the Southern Ocean? How can the representation of different processes.
A New Method for Evaluating Regional Air Quality Forecasts
A model of sea salt aerosol for Cape Grim Preliminary investigations
Atmospheric Modeling and Analysis Division,
Junhua Zhang and Wanmin Gong
INFLUX: Comparisons of modeled and observed surface energy dynamics over varying urban landscapes in Indianapolis, IN Daniel P. Sarmiento, Kenneth Davis,
Sensitivity of WRF microphysics to aerosol concentration
Radiation fogs: WRF and LES numerical experiments
Aerosol Optical Thickness
Current Research on 3-D Air Quality Modeling: wildfire!
Atmospheric modelling of HMs Sensitivity study
Presentation transcript:

Paolo Tuccella, Gabriele Curci, Suzanne Crumeyrolle, Guido Visconti Simulation aerosol-clouds interaction over Europe with the meteorology-chemistry-radiation eulerian model WRF/Chem Paolo Tuccella, Gabriele Curci, Suzanne Crumeyrolle, Guido Visconti

Direct and Indirect aerosol effects Indirect effect CLEAN Direct effect POLLUTED Breve descrizione degli effetti diretti e indiretti. Per i diretti: nelle zone inquinate è più forte il backscattering della radiazione incidente. Per gli indiretti: menzionare la dimensione delle cloud droplet più piccola nelle zone inquinate (quindi più radiazione riflessa) Clean Polluted Rosenfeld et al., Science, 2008

WRF/Chem model WRF/Chem is an online model where meteorological and chemical processes are full coupled and run on the same grid, time step and parameterizations. Implementation of direct and indirect aerosol effects in a new module for aerosol (RACM/MADE/SOA-VBS) Breve descrizione di WRF/Chem (modello online… che permette di simulare il feedback tra meteorologia e chimica). Mettere in risalto che stiamo utilizzando una nostra versione altamente sperimentale messa a punto con la NOAA. Il lavoro è una validazione per capire come risponde il nuovo meccanismo, ed un lavoro preparatorio allo studio dell’interazione aerosol-nube. [Grell et al., Atmos. Env., 2005; Fast et al., JGR, 2006; Chapman et al., ACP, 2009]

Implementation of Aerosol-Cloud interaction within new SOA scheme 𝝏𝑵 𝝏𝒕 =𝑨𝒅𝒗𝒆𝒄𝒕𝒊𝒐𝒏+𝑽𝒆𝒓𝒕𝒊𝒄𝒂𝒍 𝑫𝒊𝒇𝒇𝒖𝒔𝒊𝒐𝒏+(𝑪𝒐𝒍𝒍𝒊𝒔𝒊𝒐𝒏−𝑪𝒐𝒂𝒍𝒆𝒔𝒄𝒆𝒏𝒄𝒆−𝑪𝒐𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏)+ Evaporation + Activation N = # cloud droplet Cloud Borne Aerosol Cloud Chemistry Qui si descrive come funziona il feedback: gli aerosol (interstiziali) attivati come cloud droplet (cloud borne) possono essere trasformati all’interno delle nubi con la chimica acquosa, risospesi nelle nubi in fase dissipativa, oppure depositati dalla wet deposition. Resuspension Wet Scavenging (within and below cloud) Activation of interstitial aerosols

Extensive Evaluation: 13-18 May 2008 2 nested domain at 30, 10 Km of resolution centered over The Netherland Comparison of WRF/Chem results to observations issued in the frame of EUCAARI project Breve panoramica della campagna IMPACT di EUCAARI… Intensive Cloud Aerosol Measurement Campain (IMPACT): profiles from ATR-42 aircraft and ground based mesurements collected at Cabauw (near Amsterdam) tower

Synoptic overview Dry Conditions: 13-14 May WET Conditions: 15-18 May 14 May 12 UTC 13 May 12 UTC Dry Conditions: 13-14 May 15 May 12 UTC 17 May 12 UTC Situazione sinottica del periodo 13-18 Maggio 2008: si parte con l’alta pressione (13 e 14 Maggio). Dal 15 un nucleo di bassa pressione si comincia a muovere dalla scandinavia verso il Mare del Nord, provocando un calo della pressione sull’Olanda. La depressione raggiunge l’Olanda il 17. Quindi il periodo di simulazione è diviso in due parti: asciutto e bagnato. WET Conditions: 15-18 May

Overprediction during wet days Cabauw Tower Temperature Realtive Humidity La temperatura e l’umidità sono ok, solo nel periodo bagnato la temperatura è leggermente sovrastimata, probabilmente a causa di una propria corretta riproduzione delle nubi. Overprediction during wet days

Cabauw Tower: wind speed Metti in risalto la sovrastima del vento, ci tornerà utile in seguito. Inoltre fai notare che la direzione è ok (non mostrata). Correlation: 0.62-0.67 Gross Error: 40-49% WRF/Chem overpredicts the wind speed

Cabauw Tower: aerosol mass composition WRF/Chem tends to anticipate or postpone the observed peaks of the SO4 of a few hours NO3 NO3 is underestimated. Probably due to underestimation of total ammonia NH4 Usa tranquillamente i commenti affianco alle figure. The trend of the predicted NH4 is correlated with NO3 OM OM is underestimated by a factor of2 during the dry period.

WRF/Chem vs ATR-42: aerosol mass composition Dry conditions, above Cabauw: SO4 NO3 NH4 OM Validazione su terra. Fino alle 14 il modello va abbastanza bene, riproduce i composti organici entro un fattore 1.5-2, tranne l’OM. A circa 3000 m c’è una sottostima consistente, forse il trasporto a larga scala non è riprodotto correttamente (condizioni al bordo???). Il bias nei bassi strati potrebbe esser dovuto ad una sottostima dei gas precursori. Una delle cause della sottostima dell’OM può essere anche l’incertezza legata alla velocità di deposione dei vapori organici che in questo caso è assunta essere il 25% di quella dell’HNO3 Negative bias may be due: underestimation of precursor gases, underestimation of long range transport.

WRF/Chem vs ATR-42: aerosol mass composition From London to Rotterdam, through the North Sea: Il volo è svolto in gran parte sul Mare del Nord tra Londra e Rotterdam. Benché il modello riproduca correttamente il gradiente tra il mare e la terraferma, il valori sono sottostimati. Ciò è dovuto forse ai venti modellati troppo forti, che in questo caso provengono da nord portando aria fredda e pulita. Se ci fai caso il plum visto dal modello sulla terraferma è shiftato rispetto alle osservazioni (si trova più a sud). Credo che sia dovuto ai venti troppo forti. The negative bias may be due to a too strong advection of cool and clean air from high latitudes

WRF/Chem vs ATR-42: aerosol number concentration Cabauw North Sea Ultrafine CN Ultrafine CN Qui puoi dire tranquillamente le cose che abbiamo scritto sul proceding… WRF/Chem tends to overpredicts the CN above land about of a fator 3. Above sea, it captures the dynamical range of the observations, but exhibits a larger variability than the one observed. High positive bias may be due to an excessive nucleation or to an overestimation of the anthropogenic emissions in the ultrafine mode.

WRF/Chem vs ATR-42: cloud microphysical properties North Sea (marine stratocumulus): The cloud layer is simulated by the model lower than observed Predicted CDNC is overestimated CDNC Re LWC Cabauw (cumulus): LWC CDNC Re Far notare che il modello cattura la differenza tra terra e mare per quel che riguarda il numero delle droplet e la loro dimensione. Per il resto puoi dire ciò che abbiamo scritto sul proceding, il numero delle cloud droplet è sovrastimanto a causa della sovrastima dei CN… Inoltre, ad esempio sul mare, il modello vede le nubi più in basso rispetto alla osservazioni: effetto di soppressione dovuto alla sovrastima dei CN? The negative bias of modeled Re is directly consequence of CDNC overestimation.

Quantification of indirect effect Aim: to understand how well WRF/Chem reproduces the amplitude of first indirect effect (Twomey’s effect), i.e., the response of cloud droplet size to the variation of aerosol particle load For cloud with constant liquid water content: ACI=− 𝝏𝒍𝒏 𝒓 𝒆 𝝏𝒍𝒏𝜶 re effective radius of cloud droplets α proxy for aerosol particle load Qui potresti dichiare le intenzioni future… Theoretical estimation of ACI: 0.23 0<ACI<0.33 [Feingold et al., JGR, 2001]

THANKS FOR YOUR ATTENTION!!!