C&O 355 Lecture 15 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A A A A A A.

Slides:



Advertisements
Similar presentations
Tuesday, March 5 Duality – The art of obtaining bounds – weak and strong duality Handouts: Lecture Notes.
Advertisements

The Primal-Dual Method: Steiner Forest TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A AA A A A AA A A.
Weighted Matching-Algorithms, Hamiltonian Cycles and TSP
C&O 355 Lecture 16 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A A A A A A.
Min-Max Relations, Hall’s Theorem, and Matching-Algorithms Graphs & Algorithms Lecture 5 TexPoint fonts used in EMF. Read the TexPoint manual before you.
C&O 355 Lecture 6 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
C&O 355 Lecture 8 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
C&O 355 Lecture 9 N. Harvey TexPoint fonts used in EMF.
C&O 355 Mathematical Programming Fall 2010 Lecture 6 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A.
C&O 355 Mathematical Programming Fall 2010 Lecture 9
C&O 355 Lecture 5 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
C&O 355 Lecture 23 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A.
1 LP Duality Lecture 13: Feb Min-Max Theorems In bipartite graph, Maximum matching = Minimum Vertex Cover In every graph, Maximum Flow = Minimum.
Geometry and Theory of LP Standard (Inequality) Primal Problem: Dual Problem:
Lecture #3; Based on slides by Yinyu Ye
C&O 355 Mathematical Programming Fall 2010 Lecture 22 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A.
Introduction to Algorithms
C&O 355 Lecture 4 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
C&O 355 Mathematical Programming Fall 2010 Lecture 20 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A.
C&O 355 Mathematical Programming Fall 2010 Lecture 21 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A.
C&O 355 Mathematical Programming Fall 2010 Lecture 15 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A.
C&O 355 Lecture 20 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A.
CSCI 3160 Design and Analysis of Algorithms Tutorial 6 Fei Chen.
Dual Problem of Linear Program subject to Primal LP Dual LP subject to ※ All duality theorems hold and work perfectly!
MAE 552 – Heuristic Optimization Lecture 1 January 23, 2002.
Optimality Conditions for Nonlinear Optimization Ashish Goel Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A.
C&O 355 Mathematical Programming Fall 2010 Lecture 1 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A.
C&O 355 Lecture 2 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
C&O 355 Mathematical Programming Fall 2010 Lecture 2 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A.
Operations Research Assistant Professor Dr. Sana’a Wafa Al-Sayegh 2 nd Semester ITGD4207 University of Palestine.
C&O 355 Mathematical Programming Fall 2010 Lecture 19 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A.
C&O 355 Mathematical Programming Fall 2010 Lecture 4 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A.
Duality Theory  Every LP problem (called the ‘Primal’) has associated with another problem called the ‘Dual’.  The ‘Dual’ problem is an LP defined directly.
C&O 355 Mathematical Programming Fall 2010 Lecture 18 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A.
TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A A A A A A Image:
C&O 355 Mathematical Programming Fall 2010 Lecture 8 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A.
I.4 Polyhedral Theory 1. Integer Programming  Objective of Study: want to know how to describe the convex hull of the solution set to the IP problem.
Optimization - Lecture 4, Part 1 M. Pawan Kumar Slides available online
C&O 355 Mathematical Programming Fall 2010 Lecture 5 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A.
Hon Wai Leong, NUS (CS6234, Spring 2009) Page 1 Copyright © 2009 by Leong Hon Wai CS6234: Lecture 4  Linear Programming  LP and Simplex Algorithm [PS82]-Ch2.
C&O 355 Lecture 7 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
CPSC 536N Sparse Approximations Winter 2013 Lecture 1 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAAAAA.
OR Chapter 7. The Revised Simplex Method  Recall Theorem 3.1, same basis  same dictionary Entire dictionary can be constructed as long as we.
Proving that a Valid Inequality is Facet-defining  Ref: W, p  X  Z + n. For simplicity, assume conv(X) bounded and full-dimensional. Consider.
Inequalities for Stochastic Linear Programming Problems By Albert Madansky Presented by Kevin Byrnes.
Linear Programming Chapter 9. Interior Point Methods  Three major variants  Affine scaling algorithm - easy concept, good performance  Potential.
C&O 355 Lecture 19 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A.
Linear Programming Chap 2. The Geometry of LP  In the text, polyhedron is defined as P = { x  R n : Ax  b }. So some of our earlier results should.
Approximation Algorithms Duality My T. UF.
Submodularity Reading Group Matroid Polytopes, Polymatroid M. Pawan Kumar
L11 Optimal Design L.Multipliers
Proving that a Valid Inequality is Facet-defining
Chap 9. General LP problems: Duality and Infeasibility
Polyhedron Here, we derive a representation of polyhedron and see the properties of the generators. We also see how to identify the generators. The results.
Chap 3. The simplex method
Analysis of Algorithms
Polyhedron Here, we derive a representation of polyhedron and see the properties of the generators. We also see how to identify the generators. The results.
Chapter 5. The Duality Theorem
Lecture 18. SVM (II): Non-separable Cases
I.4 Polyhedral Theory (NW)
Flow Feasibility Problems
Chapter 5 Limits and Continuity.
C&O 355 Lecture 3 N. Harvey Review of Lecture 2:
I.4 Polyhedral Theory.
Proving that a Valid Inequality is Facet-defining
CS5321 Numerical Optimization
1.2 Guidelines for strong formulations
8/7/2019 Berhanu G (Dr) 1 Chapter 3 Convex Functions and Separation Theorems In this chapter we focus mainly on Convex functions and their properties in.
Chapter 2. Simplex method
1.2 Guidelines for strong formulations
Presentation transcript:

C&O 355 Lecture 15 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A A A A A A

Topics Subgradient Inequality Characterizations of Convex Functions Convex Minimization over a Polyhedron (Mini)-KKT Theorem Smallest Enclosing Ball Problem

Subgradient Inequality Prop: Suppose f : R ! R is differentiable. Then f is convex iff f(y) ¸ f(x) + f(x)(y-x) 8 x,y 2 R Proof: ( : See Notes Section 3.2. ) : Exercise for Assignment 4. ¤

Convexity and Second Derivative Prop: Suppose f : R ! R is twice-differentiable. Then f is convex iff f(x) ¸ 0 8 x 2 R. Proof: See Notes Section 3.2.

Subgradient Inequality in R n Prop: Suppose f : R n ! R is differentiable. Then f is convex iff f(y) ¸ f(x) + r f (x) T (y-x) 8 x,y 2 R Proof: ( : Exercise for Assignment 4. ) : See Notes Section 3.2. ¤

Minimizing over a Convex Set Prop: Let C µ R n be a convex set. Let f : R n ! R be convex and differentiable. Then x minimizes f over C iff r f(x) T (z-x) ¸ 0 8 z 2 C. Proof: ( direction Direct from subgradient inequality. f(z) ¸ f(x) + r f(x) T (z-x) ¸ f(x) Subgradient inequality Our hypothesis

Minimizing over a Convex Set Prop: Let C µ R n be a convex set. Let f : R n ! R be convex and differentiable. Then x minimizes f over C iff r f(x) T (z-x) ¸ 0 8 z 2 C. Proof: ) direction Let x be a minimizer, let z 2 C and let y = z-x. Recall that r f(x) T y = f(x;y) = lim t ! 0 f(x+ty)-f(x). If limit is negative then we have f(x+ty)<f(x) for some t 2 [0,1], contradicting that x is a minimizer. So the limit is non-negative, and r f(x) T y ¸ 0. ¥ t

Positive Semidefinite Matrices (again) Assume M is symmetric Old definition: M is PSD if 9 V s.t. M = V T V. New definition: M is PSD if y T My ¸ 0 8 y 2 R n. Claim: Old ) New. Proof: y T My = y T V T Vy = k Vy k 2 ¸ 0. Claim: New ) Old. Proof: Based on spectral decomposition of M.

Convexity and Hessian Prop: Let f: R n ! R be a C 2 -function. Let H(x) denote the Hessian of f at point x. Then f is convex iff H(x) is PSD 8 x 2 R n. Proof: ) direction Fix y 2 R n. Consider function g y ( ® ) = f(x+ ® y). Convexity of g y follows from convexity of f. Thus g y (0) ¸ 0. (convexity & 2 nd derivative) Fact: g y (0) = y T H(x) y (stated in Lecture 14) So y T H(x) y ¸ 0 8 y 2 R n ) H(x) is PSD.

Convexity and Hessian Prop: Let f: R n ! R be a C 2 -function. Let H(x) denote the Hessian of f at point x. Then f is convex iff H(x) is PSD 8 x 2 R n. Proof: ( direction. Fix x,y 2 R n. Define g : [0,1] ! R by g( ® ) = f(x+ ® (y-x)). For all ®, g( ® ) =(y-x) T H(x+ ® (y-x)) (y-x) ¸ 0. (The equality was stated in Lecture 14. The inequality holds since H is PSD.) So g is convex. (By Prop Convexity and Second Derivative) f((1- ® )x+ ® y) = g( ® ) · (1- ® )g(0) + ® g(1) = (1- ® )f(x) + ® f(y). ¥

Hessian Example Example: Let M be a symmetric n x n matrix. Let z 2 R n. Define f : R n ! R by f(x) = x T Mx - x T z. Note f(x) = § i § j M i,j x i x j - § i x i z i. Taking partial derivatives r f(x) i = 2 § j M i,j x j - z i. So r f(x) = 2Mx-z. Recall the Hessian at x is H(x) = r ( r f(x)). So H(x) = 2M.

Smallest Ball Problem Let {p 1,…,p n } be points in R d. Find (unique!) ball of smallest volume (not an ellipsoid!) that contains all the p i s. In other words, we want to solve: min { r : 9 y 2 R d s.t. p i 2 B(y,r) 8 i }

Smallest Ball Problem Let {p 1,…,p n } be points in R d. Find (unique!) ball of smallest volume (not an ellipsoid!) that contains all the p i s. In other words, we want to solve: min { r : 9 y 2 R d s.t. p i 2 B(y,r) 8 i } We will formulate this as a convex program. In fact, our convex program will be of the form min { f(x) : Ax=b, x ¸ 0 }, where f is convex. Minimizing a convex function over an (equality form) polyhedron To solve this, we will need optimality conditions for convex programs.

(Mini)-KKT Theorem j th column of A Theorem: Let f: R n ! R be a convex, C 2 function. Let x 2 R n be a feasible solution to the convex program min { f(x) : Ax=b, x ¸ 0 } Then x is optimal iff 9 y 2 R m s.t. 1) r f(x) T + y T A ¸ 0, 2) For all j, if x j >0 then r f(x) j + y T A j = 0. Proven by Karush in 1939 (his Masters thesis!), and by Kuhn and Tucker in 1951.

(Mini)-KKT Theorem Theorem: Let f: R n ! R be a convex, C 2 function. Let x 2 R n be a feasible solution to the convex program min { f(x) : Ax=b, x ¸ 0 } Then x is optimal iff 9 y 2 R m s.t. 1) r f(x) T + y T A ¸ 0, 2) For all j, if x j >0 then r f(x) j + y T A j = 0. Special Case: (Strong LP Duality) Let f(x) = -c T x. (So the convex program is max { c T x : Ax=b, x ¸ 0 }) Then x is optimal iff 9 y 2 R m s.t. 1) -c T + y T A ¸ 0, 2) For all j, if x j >0 then - c j + y T A j = 0. y is feasible for Dual LP Complementary Slackness holds

Theorem: Let f: R n ! R be a convex, C 2 function. Let x 2 R n be a feasible solution to the convex program min { f(x) : Ax=b, x ¸ 0 } Then x is optimal iff 9 y 2 R m s.t. 1) r f(x) T + y T A ¸ 0, 2) For all j, if x j >0 then r f(x) j + y T A j = 0. Proof: ( direction. Suppose such a y exists. Then ( r f(x) T + y T A) x = 0. (Just like complementary slackness) For any feasible z 2 R n, we have ( r f(x) T + y T A) z ¸ 0. Subtracting these, and using Ax=Az=b, we get r f(x) T (z-x) ¸ 0 8 feasible z. So x is optimal. (By earlier proposition Minimizing over a Convex Set)

Theorem: Let f: R n ! R be a convex, C 2 function. Let x 2 R n be a feasible solution to the convex program min { f(x) : Ax=b, x ¸ 0 } Then x is optimal iff 9 y 2 R m s.t. 1) r f(x) T + y T A ¸ 0, 2) For all j, if x j >0 then r f(x) j + y T A j = 0. Proof: ) direction. Suppose x is optimal. Let c=- r f(x). Then r f(x) T (z-x) ¸ 0 ) c T z · c T x for all feasible points z. By our earlier proposition Minimizing over a Convex Set

Theorem: Let f: R n ! R be a convex, C 2 function. Let x 2 R n be a feasible solution to the convex program min { f(x) : Ax=b, x ¸ 0 } Then x is optimal iff 9 y 2 R m s.t. 1) r f(x) T + y T A ¸ 0, 2) For all j, if x j >0 then r f(x) j + y T A j = 0. Proof: ) direction. Suppose x is optimal. Let c=- r f(x). Then r f(x) T (z-x) ¸ 0 ) c T z · c T x for all feasible points z. So x is optimal for the LP max { c T x : Ax=b, x ¸ 0 }. So there is an optimal solution y to dual LP min { b T y : A T y ¸ c }. So r f(x) T + y T A = -c T + y T A ¸ 0 ) (1) holds. Furthermore, x and y are both optimal so C.S. holds. ) whenever x j >0, the j th dual constraint is tight ) y T A j = c j ) (2) holds. ¥

Smallest Ball Problem Let P={p 1,…,p n } be points in R d. Let Q be d x n matrix s.t. Q i =p i. Let z 2 R n satisfy z i =p i T p i. Define f : R n ! R by f(x) = x T Q T Qx - x T z. Claim 1: f is convex. Consider the convex program min { f(x) : j x j = 1, x ¸ 0 }. Claim 2: This program has an optimal solution x. Claim 3: Let p * =Qx and r= -f(x). Then P ½ B(p *,r). Claim 4: B(p *,r) is the smallest ball containing P.

Let P={p 1,…,p n } be points in R d. Let Q be d x n matrix s.t. Q i =p i. Let z 2 R n satisfy z i =p i T p i. Define f : R n ! R by f(x) = x T Q T Qx - x T z. Claim 1: f is convex. Proof: By our earlier example, the Hessian of f at x is H(x) = 2 ¢ Q T Q. This is positive semi-definite. By our proposition Convexity and Hessian, f is convex. ¤

Let P={p 1,…,p n } be points in R d. Let Q be d x n matrix s.t. Q i =p i. Let z 2 R n satisfy z i =p i T p i. Define f : R n ! R by f(x) = x T Q T Qx - x T z. Consider the convex program min { f(x) : j x j = 1, x ¸ 0 }. Claim 2: This program has an optimal solution. Proof: The objective function is continuous. The feasible region is a bounded polyhedron, and hence compact. By Weierstrass Theorem, an optimal solution exists. ¤

Let Q be d x n matrix s.t. Q i =p i. Let z 2 R n satisfy z i =p i T p i. Define f : R n ! R by f(x) = x T Q T Qx - x T z. Let x be an optimal solution of min { f(x) : j x j =1, x ¸ 0 } Let p * = Qx and r 2 = -f(x) = j x j p j T p j - p *T p *. Claim 3: The ball B(p *,r) contains P. Proof: Note that r f(x) T = 2x T Q T Q - z T. By KKT, 9 y 2 R s.t. 2p j T p * - p j T p j + y ¸ 0 8 j. Furthermore, equality holds 8 j s.t. x j >0. So y = j x j y = j x j p j T p j - 2 j x j p j T p * = j x j p j T p j - 2p *T p *. So y + p *T p * = j x j p j T p j - p *T p * = -f(x) ) r = y + p *T p *

Let p * = Qx and r 2 = -f(x) = j x j p j T p j - p *T p *. Claim 3: The ball B(p *,r) contains P. Proof: Note that r f(x) = 2x T Q T Q - z. By KKT, 9 y 2 R s.t. 2p j T p * - p j T p j + y ¸ 0 8 j. Furthermore, equality holds 8 j s.t. x j >0. ) r = y + p *T p * It remains to show that B(p *,r) contains P. This holds iff k p j -p * k · r 8 j. Now k p j -p * k 2 = (p j -p * ) T (p j -p * ) = p *T p * -2p j T p * +p j T p j · y+p *T p * = r 2 8 j. ¤

Claim 4: B(p *,r) is the smallest ball containing P. Proof: See Textbook.