Endocrine System Hormones

Slides:



Advertisements
Similar presentations
Endocrine System Hormones
Advertisements

AP Biology Endocrine System Hormones. AP Biology  Why are hormones needed?  chemical messages from one body part to another  communication.
Ch 30 hormones Ap Biology Lecture Endocrine System Includes cells that produce and release chemical signals (hormones) –Endocrine cells secrete hormones.
Endocrine System Hormones
Endocrine System Hormones Why are hormones needed? – chemical messages from one body part to another – communication needed to coordinate whole.
Endocrine System Hormones (Ch. 45).
AP Biology Endocrine System Hormones AP Biology  Why are hormones needed?  chemical messages from one body part to another  communication.
Endocrine System Hormones
Endocrine System Hormones
Endocrine System Hormones Regulation Why are hormones needed? –chemical messages from one body part to another –communication needed to coordinate whole.
AP Biology Agenda for 3/19  Cell Communication Booklet Review using PPT  “My Dog is Broken”  Organize work and concept mapping That’s life- Why you.
AP Biology Endocrine System Hormones AP Biology  Hormone: chemicals secreted by cells that regulate other cells  Gland: organ whose cells.
Endocrine System Hormones
Cell signaling The Endocrine System. Cell communication Animals use two body systems for regulation Endocrine system of glands, secrete chemicals into.
AP Biology Agenda for 3/18  Turn in Notebooks and “My Dog is Broken”  Cell Communication Booklet Review using PPT  Cell Signaling Project Quiz Tomorrow.
AP Biology Endocrine System Hormones AP Biology Regulation  Why are hormones needed?  chemical messages from one body part to another  communication.
AP Biology Endocrine System Hormones AP Biology  Why are hormones needed?  chemical messages from one body part to another  communication.
AP Biology Endocrine System Hormones AP Biology Regulation  Why are hormones needed?  chemical messages from one body part to another  communication.
Chapter 41 Chemical Regulation Regulation  Why are hormones needed?  chemical messages from one body part to another  communication needed to coordinate.
THE ENDOCRINE SYSTEM Chapter 16 OVERVIEW Group of unimpressive, discontinuous organs Group of unimpressive, discontinuous organs Coordinates and integrates.
Endocrine System Hormones Regulation Why are hormones needed?  Chemical messages from one body part to another  Communication needed to coordinate.
AP Biology Endocrine System Hormones AP Biology  Why are hormones needed?  chemical messages from one body part to another  communication.
AP Biology Endocrine System Hormones AP Biology Regulation  Why are hormones needed?  chemical messages from one body part to another  communication.
The Endocrine System.
Hormones & Homeostasis
Endocrine System Hormones
Endocrine System Hormones
Endocrine System Hormones
Endocrine System Hormones
Endocrine System Hormones
Endocrine System Hormones
Endocrine System Hormones
Introductory Questions #8
Endocrine System Hormones
Hormones & Homeostasis
Endocrine System Hormones
Endocrine System Hormones
Hormones & Homeostasis
Communication using Hormones
Chapter 45 Endocrine System Hormones
Endocrine System Hormones
Aim: Endocrine System.
Endocrine System Hormones
Regulation Why are hormones needed?
Ch. 40 Warm-Up What type of behavior in animals might be triggered by cold temperatures? What type of behaviors might be triggered in hot temperatures?
Hormones and the Endocrine System
Endocrine System Hormones
Endocrine System Hormones
Endocrine System Hormones
Regulation and Control
Endocrine System Hormones
Endocrine System Hormones
Endocrine System Hormones
Endocrine System Hormones
Endocrine System Hormones
Endocrine System Hormones
Chapter 45: Endocrine System
Endocrine System Hormones
Endocrine System Hormones
Endocrine System Hormones
Endocrine System Hormones
Endocrine System Hormones
Endocrine System Hormones
Endocrine System Hormones
Endocrine System Hormones
Endocrine System Hormones
Endocrine System Hormones
Presentation transcript:

Endocrine System Hormones 2006-2007

Regulation Why are hormones needed? chemical messages from one body part to another communication needed to coordinate whole body homeostasis & regulation metabolism growth development maturation reproduction growth hormones

Regulation & Communication Animals rely on 2 systems for regulation endocrine system ductless gland which secrete chemical signals directly into blood chemical travels to target tissue slow, long-lasting response nervous system system of neurons, central nerve system transmits “electrical” signal to target tissue fast, short-lasting response Hormones coordinate slower but longer–acting responses to stimuli such as stress, dehydration, and low blood glucose levels. Hormones also regulate long–term developmental processes by informing different parts of the body how fast to grow or when to develop the characteristics that distinguish male from female or juvenile from adult. Hormone–secreting organs, called endocrine glands, are referred to as ductless glands because they secrete their chemical messengers directly into extracellular fluid. From there, the chemicals diffuse into the circulation.

Regulation by chemical messengers Neurotransmitters released by neurons Hormones release by endocrine glands Endocrine gland Neurotransmitter Axon Hormone carried by blood Receptor proteins Receptor proteins Target cell

Classes of Hormones Protein-based hormones Lipid-based hormones polypeptides small proteins: insulin, ADH glycoproteins large proteins + carbohydrate: FSH, LH amines modified amino acids: epinephrine, melatonin Lipid-based hormones steroids modified cholesterol: sex hormones, aldosterone

How do hormones act on target cells Lipid-based hormones hydrophobic & lipid-soluble diffuse across membrane & enter cells bind to receptor proteins in cytoplasm & nucleus bind to DNA as transcription factors Protein-based hormones hydrophilic & not lipid soluble can’t diffuse across membrane trigger secondary messenger pathway activate cellular response enzyme action, uptake or secretion of molecules…

Action of lipid (steroid) hormones cytoplasm steroid hormone blood S S 1 protein carrier S 2 receptor protein 4 S 3 DNA 5 mRNA protein plasma membrane nucleus

Action of protein hormones 1 Protein hormone activates enzyme G protein Receptor protein cAMP 3 2 ATP activates enzyme protein messenger cascade GTP activates enzyme 4 cytoplasm Produces an action

Action of epinephrine (adrenalin) liver cell 1 epinephrine activates adenylyl cyclase adrenal gland G protein cAMP receptor protein 3 2 ATP activates protein kinase-A GTP activates phosphorylase 4 released to blood cytoplasm glycogen glucose

Benefits of a 2° messenger system 1 Receptor protein Activated adenylyl cyclase Signal molecule Not yet activated 2 Amplification 4 Amplification cAMP 3 5 GTP G protein Protein kinase 6 Amplification Amplification! Enzyme 7 Amplification Enzymatic product

Negative Feedback Model hormone 1 gland lowers body condition high specific body condition low raises body condition gland 2005-2006 hormone 2

dilates surface blood vessels constricts surface blood vessels Nervous System Control Feedback Body Temperature nerve signals brain sweat dilates surface blood vessels high body temperature low constricts surface blood vessels shiver brain 2005-2006 nerve signals

body cells take up sugar from blood Endocrine System Control Feedback Blood Sugar insulin body cells take up sugar from blood liver stores sugar reduces appetite pancreas liver high blood sugar level low liver releases sugar triggers hunger pancreas liver 2005-2006 glucagon

increased water reabsorption increased water & salt reabsorption Endocrine System Control Feedback Blood Osmolarity increase thirst ADH pituitary increased water reabsorption nephron high blood osmolarity blood pressure low nephron increased water & salt reabsorption adrenal gland renin aldosterone angiotensinogen 2005-2006 angiotensin

Endocrine & Nervous system links Hypothalamus = “master control center” nervous system receives information from nerves around body about internal conditions regulates release of hormones from pituitary Pituitary gland = “master gland” endocrine system secretes broad range of hormones regulating other glands

Thyroid gland Hypothalamus Anterior pituitary Gonadotropic hormones: Follicle- stimulating hormone (FSH) & luteinizing hormone (LH) Mammary glands in mammals Muscles of uterus Kidney tubules Posterior Thyroid-stimulating Hormone (TSH) Antidiuretic hormone (ADH) Adrenal cortex Bone and muscle Testis Ovary Melanocyte in amphibian Adrenocorticotropic hormone (ACTH) Melanocyte-stimulating hormone (MSH) Oxytocin Prolactin (PRL) Growth hormone (GH)

metamorphosis & maturation Homology in hormones What does this tell you about these hormones? prolactin growth hormone same gene family amphibians metamorphosis & maturation birds fat metabolism fish salt & water balance mammals growth & development milk production The most remarkable characteristic of prolactin (PRL) is the great diversity of effects it produces in different vertebrate species. For example, prolactin stimulates mammary gland growth and milk synthesis in mammals; regulates fat metabolism and reproduction in birds; delays metamorphosis in amphibians, where it may also function as a larval growth hormone; and regulates salt and water balance in freshwater fishes. This list suggests that prolactin is an ancient hormone whose functions have diversified during the evolution of the various vertebrate groups. Growth hormone (GH) is so similar structurally to prolactin that scientists hypothesize that the genes directing their production evolved from the same ancestral gene. Gene duplication!

Regulating metabolism Hypothalamus TRH = TSH-releasing hormone Anterior Pituitary TSH = thyroid stimulating hormone Thyroid produces thyroxine hormones metabolism & development bone growth mental development metabolic use of energy blood pressure & heart rate muscle tone digestion reproduction The thyroid gland produces two very similar hormones derived from the amino acid tyrosine: triiodothyronine (T3), which contains three iodine atoms, and tetraiodothyronine, or thyroxine (T4), which contains four iodine atoms. In mammals, the thyroid secretes mainly T4, but target cells convert most of it to T3 by removing one iodine atom. Although both hormones are bound by the same receptor protein located in the cell nucleus, the receptor has greater affinity for T3 than for T4. Thus, it is mostly T3 that brings about responses in target cells. tyrosine iodine thyroxine

Goiter Iodine deficiency causes thyroid to enlarge as it tries to produce thyroxine

Regulating blood calcium levels Thyroid Low blood Ca++ Parathyroids – Parathyroid hormone (PTH) Negative feedback PTH activates Vitamin D into hormone that enables calcium absorption from intestines. This is why Vitamin D deficiency causes rickets = poor bone formation Increased absorption of Ca++ from intestine due to PTH activation of Vitamin D Reabsorption of Ca++ & excretion of PO4 Osteoclasts dissolve CaPO4 crystals in bone, releasing Ca++ Increased blood Ca++

Female reproductive cycle Feedback Female reproductive cycle egg matures & is released (ovulation) builds up uterus lining estrogen ovary corpus luteum progesterone FSH & LH fertilized egg (zygote) maintains uterus lining HCG yes pituitary gland corpus luteum pregnancy GnRH no progesterone corpus luteum breaks down progesterone drops menstruation maintains uterus lining 2005-2006 hypothalamus

Any Questions?? 2005-2006