Only three lines observed R(0) R(1) P(1)

Slides:



Advertisements
Similar presentations
Lecture 6 Vibrational Spectroscopy
Advertisements

Lecture 3 Kinetics of electronically excited states
Spectroscopy 1: Rotational and Vibrational Spectra CHAPTER 13.
Lecture 5 Vibrational Spectra of Simple Molecules.
Taking the fingerprints of stars, galaxies, and interstellar gas clouds Absorption and emission from atoms, ions, and molecules.
PHOTONS IN CHEMISTRY OUT WHY BOTHER?. E = h ν λν = c [ m/s]
1 射电天文基础 姜碧沩北京师范大学天文系 2009/08/24-28 日,贵州大学. 2009/08/24-28 日射电天文暑期学校 2 Spectral Line Fundamentals The Einstein Coefficients Radiative Transfer with Einstein.
ASTR112 The Galaxy Lecture 8 Prof. John Hearnshaw 12. The interstellar medium (ISM): gas 12.1 Types of IS gas cloud 12.2 H II regions (diffuse gaseous.
Average Lifetime Atoms stay in an excited level only for a short time (about 10-8 [sec]), and then they return to a lower energy level by spontaneous emission.
Substitution Structure. Scattering Theory P = α E.
Absorption and Emission of Radiation:
Ch ; Lecture 26 – Quantum description of absorption.
Radio Astronomy Emission Mechanisms. NRAO/AUI/NSF3 Omega nebula.
441 Chem Introduction to Spectroscopy CH-1 1. Introduction to Spectroscopy Set of methods where interaction of electromagnetic radiation with chemical.
Substitute Lecturer: Jason Readle Thurs, Sept 17th, 2009
Separation of Motion QM. Separation Vibration Rotation.
C We have to solve the time independent problem H o  o = E o  o Harry Kroto 2004.
Atomic transitions and electromagnetic waves
Electromagnetic radiation – transmission of energy through space in the form of oscillating waves wavelength, – distance between identical points on successive.
4-Level Laser Scheme nn  m  →  n  excitation  n  →  m  radiative decay slow  k  →  l  fast(ish)  l  →  m  fast to maintain population.
Bill Madden  = (4  /3ħc)  n  e  m  2  (N m -N n )  (  o -  ) Square of the transition moment  n  e  m  2 2.Frequency.
Quantitative Chemical Analysis Seventh Edition Quantitative Chemical Analysis Seventh Edition Chapter 18 Fundamentals of Spectrophotometry Copyright ©
Chemistry XXI Unit 2 How do we determine structure? The central goal of this unit is to help you develop ways of thinking that can be used to predict the.
IR Spectroscopy Wave length ~ 100 mm to 1 mm
Cardinal O’Connell of Boston attacked Einstein’s General Theory of Relativity saying “The theory cloaked the ghastly apparition of atheism and befogged.
1.1 What’s electromagnetic radiation
ASTR112 The Galaxy Lecture 9 Prof. John Hearnshaw 12. The interstellar medium: gas 12.3 H I clouds (and IS absorption lines) 12.4 Dense molecular clouds.
Chapter 14 The Interstellar Medium. All of the material other than stars, planets, and degenerate objects Composed of gas and dust ~1% of the mass of.
Time Dependent Perturbation Theory
Spiral Galaxy - Canis Venitici We can only see about 1/6 (ca 6000ly) of the way to the Galctic Centre due to scattering by gas and dust in the disk.
H Atom 21 cm Line. Is the Milky Way a Spiral Galaxy like this one?
Time independent H o  o = E o  o Time dependent [H o + V(t)]  = iħ  /  t Harry Kroto 2004 Time dependent Schrödinger [H o + V(t)]  = iħ  / 
Mellinger Lesson 6 molecular line & clouds Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio astronomy.
The Electromagnetic Spectrum. Radio wave Less than 1 GHz.
Absorption Small-Signal Loss Coefficient. Absorption Light might either be attenuated or amplified as it propagates through the medium. What determines.
Tuesday, September 11 Homework due Tuesday, September 18 th Outline: –Airmass –Magnitudes –Types of Spectra Blackbody Emission Line.
The Interstellar Medium (ISM)
Spectroscopy Microwave (Rotational) Infrared (Vibrational)
Fermi’s Golden Rule Io I l Harry Kroto 2004.
Time Dependent Perturbation Theory
Spectroscopy from Space
The Interstellar Medium and Star Formation
The Interstellar Medium and Star Formation
“Forbidden Transitions”
Queen Magazine Harry Kroto 2004.
WHERE STARS ARE BORN.
Molecular Vibrations and IR Spectroscopy
The Electromagnetic Spectrum
Molecular Vibrations and IR Spectroscopy
DETECTING MOLECULAR LINES IN THE GHz FREQUENCY RANGE
Einstein Coefficients
The ISM and Stellar Birth
Doppler Shifts of Interstellar NaD lines
This is the far infra red spectrum of the diatomic molecule CO
I = μr2 μ = m1m2/(m1+m2) I (uÅ2) = / B(cm-1)
H’(t)=E-M field D  = - fi Transition dipole moment.
The Interstellar Medium
Molecular Vibrations and IR Spectroscopy
Queen Magazine Harry Kroto 2004.
In Voltaire’s “Elémens de la Theorie de Newton“ (1738)
In Voltaire’s “Elémens de la Theorie de Newton“ (1738)
5.4 Learning from Light Our goals for learning
Molecules Harry Kroto 2004.

Betelgeuse Bellatrix Mintaka Anilam Alnitak Flame and Horsehead →
 = (4/3ħc) n em2  (Nm-Nn) (o-)
Astro 18 – Section Week 2 EM Spectrum.
Far infrared rotational spectrum of CO J= B
 l .  l   l   l   l  Io.
Harry Kroto 2004.
Presentation transcript:

Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T> 0K Harry Kroto 2004

Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T> 0K  l  Io I I I = Ioe- l I = Io (1 - l + …) Io - I = I ~ l Harry Kroto 2004

IR(1) /IR(0) ~ R(1) /R(0) Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T> 0K  l  Io I I I = Ioe- l I = Io (1 - l + …) (Io – I)/ Io = I/ Io ~ l IR(1) /IR(0) ~ R(1) /R(0) Harry Kroto 2004

IR(1) /IR(0) ~ R(1) /R(0) Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T> 0K  l  Io I I I = Ioe- l I = Io (1 - l + …) (Io – I)/ Io = I/ Io ~ l IR(1) /IR(0) ~ R(1) /R(0) Harry Kroto 2004

IR(1) /IR(0) ~ R(1) /R(0) Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T> 0K  l  Io I I I = Ioe- l I = Io (1 - l + …) (Io – I)/ Io = I/ Io ~ l IR(1) /IR(0) ~ R(1) /R(0) Harry Kroto 2004

IR(1) /IR(0) ~ R(1) /R(0) Only three lines observed R(0) R(1) P(1) The detection of R(1) and P(1) indicates T> 0K  l  Io I I I = Ioe- l I = Io (1 - l + …) (Io – I)/ Io = I/ Io ~ l IR(1) /IR(0) ~ R(1) /R(0) Harry Kroto 2004

Fermi’s Golden Rule x Io I l Harry Kroto 2004

Beer Lambert Law I= Io e-l Fermi’s Golden Rule x Io I l Beer Lambert Law I= Io e-l Harry Kroto 2004

Beer Lambert Law I= Io e-l Fermi’s Golden Rule x Io I l Beer Lambert Law I= Io e-l Harry Kroto 2004

Beer Lambert Law I= Io e-l Fermi’s Golden Rule x Io I l Beer Lambert Law I= Io e-l Harry Kroto 2004

Beer Lambert law I= Io e-l Fermi’s Golden Rule x Io I l Beer Lambert law I= Io e-l Harry Kroto 2004

Beer Lambert law I= Io e-l  is the absorption coefficient Fermi’s Golden Rule x Io I l Beer Lambert law I= Io e-l  is the absorption coefficient  = (83/3hc)n em 2 (Nm-Nn)(o-) Harry Kroto 2004

 = (4/3ħc) n em2  (Nm-Nn) (o-) Harry Kroto 2004

 = (4/3ħc) n em2  (Nm-Nn) (o-) ① Square of the transition moment n em2 Harry Kroto 2004

 = (4/3ħc) n em2  (Nm-Nn) (o-) ① ② Square of the transition moment n em2 Frequency of the light  Harry Kroto 2004

 = (4/3ħc) n em2  (Nm-Nn) (o-) ① ② ③ Square of the transition moment n em2 Frequency of the light  Population difference (Nm- Nn) Harry Kroto 2004

 = (4/3ħc) n em2  (Nm-Nn) (o-) ① ② ③ ④ Square of the transition moment n em2 Frequency of the light  Population difference (Nm- Nn) Resonance factor - Dirac delta function (0) = 1 Harry Kroto 2004

C Solution > Energy Levels For the H atom we shall just use the Bohr result E(n) = - R/n2 D Selection Rules n no restriction l = ±1 E Transition Frequencies E = - R[ 1/n22 – 1/n12] Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004

Hot gas cloud –the famous Orion Nebulae At the centre is the Trapezium Cluster of very hot new stars Harry Kroto 2004

2b = 103/n yrs per collision 3b = 1023/n2 yrs per collision Collisions in the Interstellat Medium ISM In space the pressures are low Very low If n = number of molecules per cc (mainly H) then 2b = 103/n yrs per collision 3b = 1023/n2 yrs per collision Number densities are anything from n = 1-1000 Harry Kroto 2004

Einstein Coefficients Bn<-m m Harry Kroto 2004

Einstein Coefficients Bn<-m Bn->m m Harry Kroto 2004

An->m/ Bn->m = 8h3/c 3 Einstein Coefficients n Bn<-m Bn->m An->m m An->m/ Bn->m = 8h3/c 3 Harry Kroto 2004

Einstein Coefficients Bn<-m Bn->m An->m m A = 1.2 x 10-37 3 n em2 transitions per sec Spontaneous emission lifetime   (sec) = 1/A = 1037/3 sec Harry Kroto 2004

 (sec) = 1037/3   (cm-1)  (Hz) 3 (Hz3)  (sec) H (1420 MHz) 21cm 0.05 1.5x109 3x1027 1010 * H2CO rotations 1cm 1 3 x 1010 3x1031 106 CO2 vibrations 10 103 3 x 1013 3 x 1040 10-3 Na D electronic 500nm 2x104 1.5 x 1014 6 x 1044 10-7 H Lyman  100nm 105 3 x 1015 3 x 1046 10-9 Calculations assume e = 1Debye 1yr = 3 x 107 sec * magnetic dipole Harry Kroto 2004

Harry Kroto 2004

Bohr radius an = aon2 ao = 0.05 nm Harry Kroto 2004

Bohr radius an = aon2 ao = 0.05 nm Calculate a10, a100 and a300 in cm Harry Kroto 2004

Bohr radius an = aon2 ao = 0.5 Å (1Å = 10-8cm) a300 = 0.5x10-3 cm = 0.005 mm Harry Kroto 2004

Harry Kroto 2004

Nitrosoethane Harry Kroto 2004

What can molecules do Harry Kroto 2004

What can molecules do 2 Harry Kroto 2004

What can molecules do 2 Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004

Harry Kroto 2004