Inorganic Scintillators in Medical-imaging Detectors C. W. E

Slides:



Advertisements
Similar presentations
What are PET basics?.
Advertisements

6: Positron Emission Tomography
1 Proton detection with the R3B calorimeter, two layer solution IEM-CSIC sept report MINISTERIO DE EDUCACIÓN Y CIENCIA CONSEJO SUPERIOR DE INVESTIGACIONES.
Fysisk institutt - Rikshospitalet 1. 2 Overview Gamma camera Positron emission technology (PET) Computer tomography (CT) Proton therapy Electrical impedance.
Medical Imaging Mohammad Dawood Department of Computer Science University of Münster Germany.
Medical Imaging Mohammad Dawood Department of Computer Science University of Münster Germany.
Tests of scintillators CsI, CsI(Na), BGO, NaI(Tl) CsI(Tl)
ipno.in2p3.fr Milano - October 2006IPNO-RDD-Jean Peyré1 Measurements of CsI(Tl) Crystals with PMT and APD Jean Peyré Milano - Oct 2006.
Nustar/crystal simulations B. Genolini Crystal: CsI(Tl) (Saint Gobain), wrapped with reflector (VM2000, Tyveck?) Geometry:
Crystals and related topics J. Gerl, GSI NUSTAR Calorimeter Working Group Meeting June 17, 2005 Valencia.
Planar scintigraphy produces two-dimensional images of three dimensional objects. It is handicapped by the superposition of active and nonactive layers.
High spatial resolution measurement of depth-of-interaction of a PET LSO crystal Aliz Simon a László Balkay b, István Chalupa b, Gábor Kalinka a, András.
Very High Resolution Small Animal PET Don J. Burdette Department of Physics.
RAD2012, Nis, Serbia Positron Detector for radiochemistry on chip applications R. Duane, N. Vasović, P. LeCoz, N. Pavlov 1, C. Jackson 1,
Medical Image Analysis Medical Imaging Modalities: X-Ray Imaging Figures come from the textbook: Medical Image Analysis, Second Edition, by Atam P. Dhawan,
Department of Radiology UNIVERSITY OF PENNSYLVANIA 1 Investigation of LaBr 3 Detector Timing Resolution A.Kuhn 1, S. Surti 1, K.S. Shah 2, and J.S. Karp.
Development of New Detectors for PET Imaging at BNL DOE/JLAB Meeting Bethesda, MD May 20, 2004 Craig Woody Physics Dept Brookhaven National Lab RatCAPBeta.
Fundamental Limits of Positron Emission Tomography
Medical Image Analysis Dr. Mohammad Dawood Department of Computer Science University of Münster Germany.
A Front End and Readout System for PET Overview: –Requirements –Block Diagram –Details William W. Moses Lawrence Berkeley National Laboratory Department.
TU Delft IRI-ST Inorganic Scintillators in Medical-imaging Detectors C.W.E. van Eijk A msterdam, 9 September 2002.
HEALTH Novel MR-compatible PET detectors for simultaneous PET/MRI imaging FP7-HEALTH-2009-single-stage The focus should be to develop novel.
Professor Brian F Hutton Institute of Nuclear Medicine University College London Emission Tomography Principles and Reconstruction.
Optimization of Detectors for Time of Flight PET Marek Moszyński, Tomasz Szczęśniak, Soltan Institute for Nuclear Studies, Otwock-Świerk, Poland.
RADIOGRAPHY & IT’S MODALITIES SPRING INFORMATION WORKSHOP 2011.
C. Joram - HPD-PET team - Bari (Italy), 17 January 2007 The 3D Axial PET Concept Christian Joram, CERN, PH-Department Positron Emission Tomography - Principle.
Increase in Photon Collection from a YAP:Ce Matrix Coupled to Wave Lenght Shifting Fibres N. Belcari a, A. Del Guerra a, A. Vaiano a, C. Damiani b, G.
Nuclear Medicine: Tomographic Imaging – SPECT, SPECT-CT and PET-CT Katrina Cockburn Nuclear Medicine Physicist.
16. January 2007Status Report On Compton Imaging Projects 1 Status Of Compton Imaging Projects Carried Out In The CIMA Collaboration HPD Brain PET Meeting.
Seoul National University Functional & Molecular Imaging System Lab Progress in Nuclear Imaging Mikiko Ito, PhD Dept. of Nuclear Medicine, Seoul National.
Nuclear Medicine Principles & Technology_I
Medical applications of particle physics General characteristics of detectors (5 th Chapter) ASLI YILDIRIM.
Scintillators suitable for PET applications must be characterized by a high efficiency for gamma-ray detection, determined by a high density and atomic.
1 Nuclear Medicine SPECT and PET. 2 a good book! SR Cherry, JA Sorenson, ME Phelps Physics in Nuclear Medicine Saunders, 2012.
Peter Dendooven LaBr 3 and LYSO monolithic crystals coupled to photosensor arrays for TOF-PET Physics for Health in Europe Workshop February 2-4, 2010,
F. Garibaldi 1,, F. Cusanno 1), S. Majewski 3), N. Clinthorne, P. Musico 4),…………………………. TOPEM: a PET TOF probe, compatible with MRI and MRS for diagnosis.
Nuclear Medicine Physics and Equipment 243 RAD 1 Dr. Abdo Mansour Assistant Professor of radiology
Nuclear Medicine Instrumentation 242 NMT 1 Dr. Abdo Mansour Assistant Professor of radiology
DIGITAL RADIOGRAPHY.
a Very Interesting Presentation
PET Imaging Positron Emission Tomography
Simulations in Medical Physics Y. TOUFIQUE*, R.CHERKAOUI EL MOURSLI*, M.KACI**, G.AMOROS**, *Université Mohammed V –Agdal, Faculté des Sciences de Rabat,
Gamma Spectrometry beyond Chateau Crystal J. Gerl, GSI SPIRAL 2 workshop October 5, 2005 Ideas and suggestions for a calorimeter with spectroscopy capability.
P. Lecoq CERN2 February ENVISION WP2 Meeting CERN Group contribution to ENVISION WP2 Paul Lecoq CERN, Geneva.
+ Voxel Imaging Pizza Gianluca De Lorenzo. + Positron Emission Tomography April Gianluca De Lorenzo.
5.5 Medical Applications Using Radioactivity
Positron emission tomography without image reconstruction
Biomedical Engineering Medical Imaging
Positron emission tomography: a review of basic principles, scanner design and performance, and current systems  Pat Zanzonico  Seminars in Nuclear Medicine 
MSc medical imaging, Division of Medical Physics, University of Leeds
Scintillation Science and Nuclear Medical Imaging
Introduction to medical imaging
Frontier Detectors for Frontier Physics
Synchrotron Radiation Detector Studies
Learning Objectives By the end of this lesson you should…
AQUA-ADVANCED QUALITY ASSURANCE FOR CNAO
Development of a High Precision Axial 3-D PET for Brain Imaging
Upgrade of LXe gamma-ray detector in MEG experiment
Application of Nuclear Physics
Upgrade of LXe gamma-ray detector in MEG experiment
Overview of CR and DR Gyeongsang National University Hospital
Medical Imaging Imagining Modalities.
Upgrade of LXe gamma-ray detector in MEG experiment
כיצד נרכשת התמונה בסרט הרנטגני?
LSO/LYSO Crystals for Future High Energy Physics Experiments
Upgrade of LXe gamma-ray detector in MEG experiment
Function and Structure in
First demonstration of portable Compton camera to visualize 223-Ra concentration for radionuclide therapy Kazuya Fujieda (Waseda University) J. Kataoka,
Past / Future in Scintillation
Presentation transcript:

Inorganic Scintillators in Medical-imaging Detectors C. W. E Inorganic Scintillators in Medical-imaging Detectors C.W.E. van Eijk Amsterdam, 9 September 2002

Efficiency Inorganic scintillator Radiation in Medical Imaging Energies X-ray imaging Mammography 25 kVp, ~18 keV Radiography, chest 150 kVp Fluoroscopy 150 kVp X-ray CT 150 kVp Nuclear medicine Scintigraphy 80 - 140 keV SPECT 60 - 511 keV PET 511 keV Modality emission transmission Efficiency Inorganic scintillator

Interventional Radiology Fluoroscopy - Real time - Low dose ImageIntensifier Mobile C-arm system for full surgical and minimally-invasive procedures From: Philips Medical Systems BV300 series

Transjugular Intrahepatic Portosystemic Shunt (TIPS) Interventional Radiology minimally-invasive procedure Transjugular Intrahepatic Portosystemic Shunt (TIPS)

Flat panel detector - Amorphous silicon Interventional Radiology Flat panel detector - Amorphous silicon Columnar CsI:Tl ADC readout addressing 2k x 2k 40 x 40 cm2 also for radiography Flat X-ray Detectors for Medical Imaging Dr. Michael Overdick Session 5 From: Philips, Aachen

Flat panel detector - Amorphous silicon Interventional Radiology Flat panel detector - Amorphous silicon Photodiode signal depends on: scintillator light yield optical coupling spectral matching diode efficiency From: Philips, Aachen

Interventional Radiology CsI:Tl pillar growth induced by evaporation technique crack structure focussing of light >500 µm layers high MTF From: Philips, Aachen

X-ray Computed Tomography Ceramic scintillators + photodiodes ~ 1 k x 1 mm ~ 16 x 1 mm X-ray source (rotating) + 1-D or 2-D position-sensitive detector X-ray fan beam E. Hell et al, NIM A 454 (2000) 40-48

From: W.A. Kalender, CT, 2000, MCD Verlag X-ray Computed Tomography 1974: 80 x 80 pixels slices of 13 mm spacing 2000: 1024 x 1024 pixels spiral scanning From: W.A. Kalender, CT, 2000, MCD Verlag

X-ray Computed Tomography Ceramic Scintillators 4 density ρZ light yield dec. time afterglow wavel. max. (g/cm3) (106) (phot./MeV) (μs) (% after (nm) 3/100 ms) CdWO4 7.9 134 20,000 5 < 0.1/ 0.02 495 Bi4Ge3O12 (BGO) 7.1 227 9,000 0.3 480 CsI:Tl 4.5 38 66,000 8 > 6 >2/0.3 550 - Gd2O2S:Pr,Ce,F 7.3 103 35,000 4 < 0.1/< 0.01 510 Gd2O2S:Pr (UFC) 7.3 103 50,000 3 0.02/0.002 510 Y1.34 Gd0.60 O3:(Eu,Pr)0.06 5.9 44 44,000 1000 4.9/< 0.01 610 (Hilight) Gd3Ga5O12:Cr,Ce 7.1 58 40,000 140 < 0.1/0.01 730 Lu2O3:Eu,Tb 9.4 211 30,000 > 1000 > 1/0.3 610

X-ray Computed Tomography Afterglow in scintillators 1 angle per < ms From: W.A. Kalendber, CT, 2000, MCD Verlag

Positron Emission Tomography Detector ring (inner diam. ~ 0.8 m) Collinearly emitted 511 keV quanta detected in coincidence Detectors BGO + PMT Bi4Ge3O12 Radiopharmaceutical β+ emitter

Positron Emission Tomography PET systems Siemens-CTI http://www.epub.org.br/cm/n01/pet/pet_hist.htm

PET Detector Block Efficiency BGO detector block A B 4 PMTs C D 8 x 8 columns 30 mm of 6 x 6 x 30 mm3 Bi4Ge3O12 Efficiency

Positron Emission Tomography: 2D & 3D Septa Septa removed 2D 3D

Positron Emission Tomography 3D PET Increase Random coincidences ~ N2singlesτ Time resolution Energy resolution Light yield Decay time Non-proportionality From: G. Muehllehner et al. & SCINT 2001

Positron Emission Tomography PET Scintillators  1/μ 511 keV light yield   (g/cm3) (mm) /PE (%) (photons/MeV) (ns) (nm) Bi4Ge3O12 (BGO) 7.1 11.6 / 44 9,000 300 480 Lu2SiO5:Ce (LSO) 7.4 12.3 / 34 26,000 40 420 Gd2SiO5:Ce (GSO) 6.7 15 / 26 8,000 60 440 LuxY1-xAlO3:Ce (LuAP) 8.3 11.0 / 32 11,000 18 365 Lu2Si2O7:Ce (LPS) 6.2 14.5 / 29 20,000 30 380 Energy resolution poor

photomultiplier readout Scintillators Energy Resolution LaCl3:Ce(10%) ΔE/E = 3.1 % 600 700 200 400 800 1000 1200 1400 1600 LaCl 3 :Ce counts energy [keV] E (keV) COUNTS photomultiplier readout Hamamatsu R1791 E.V.D. van Loef et al Appl. Phys. Lett. 77 (2000) 1467

incorrect Line of Response PET basics: Position resolution Efficient High position resolution parallax error or radial elongation Off centre: incorrect Line of Response Remedy: Depth of Interaction measurement DOI

PET: Depth of Interaction in HRRT PMTs Light guides LSO scintillators Lu2SiO5:Ce 7.5 x 2.1 x 2.1 mm3 Different decay times in the two layers  Different pulse shape  DOI PMTs From: D.W. Townsend, C. Morel presented at SCINT 2001 K. Wienhard et al 2000 IEEE NSS/MIC CDROM 17 280

Pulse shape discrimination PET: DOI Crystal Clear Depth of Interaction LSO LuAP APD array Pulse shape discrimination Saoudi et al IEEE Trans Nucl Sci 46(1999)462, also 479 Seidel et al IEEE Trans Nucl Sci 46(1999)485

Positron Emission Tomography Multi modality PET + MRI Blood flow changes under speech activation (red) Tumor (green) From: Klaus Wienhard MPI für Neurologische Forschung, Köln

Inorganic Scintillators in Medical-imaging Detectors Conclusion Interest in further improvement of inorganic scintillators Fundamental research Especially for PET also Mammography PET Small Animal PET Use of new light detectors APDs Silicon drift detectors C.W.E. van Eijk Inorganic scintillators in medical imaging Phys.Med.Biol. 47 (2002) R85 - R106