Log-Linear Models Local Structure Representation Probabilistic Graphical Models Local Structure Log-Linear Models
Log-Linear Representation Each feature fj has a scope Dj Different features can have same scope
Representing Table Factors (X1, X2) =
Features for Language Features: word capitalized, word in atlas or name list, previous word is “Mrs”, next word is “Times”, … Phrases
Ising Model
Metric MRFs All Xi take values in label space V Distance function : V V R Reflexivity: (v,v) = 0 for all v Symmetry: (v1,v2) = (v2,v1) for all v1, v2 Triangle inequality: (v1,v2) (v1,v3) + (v3, v2) for all v1, v2, v3 want Xi and Xj to take “similar” values Xi Xj
Metric MRFs All Xi take values in label space V Distance function : V V R want Xi and Xj to take “similar” values Xi Xj values of Xi and Xj far in lower probability
Metric MRF Examples 1 (vk,vl) = vk=vl otherwise (vk,vl) vk-vl 1 1 (vk,vl) = vk=vl otherwise (vk,vl) vk-vl (vk,vl) vk-vl
Metric MRF: Segmentation 1 1 (vk,vl) = vk=vl otherwise
Metric MRF: Denoising (vk,vl) = |vk-vl| vk-vl vk-vl (vk,vl) = max(|vk-vl|,d) Similar idea for stereo reconstruction