Simple Machines In a simple machine, input work is done by a person applying a single force, and the machine does output work also by means of a single.

Slides:



Advertisements
Similar presentations
Work, Power, and Simple Machines
Advertisements

Chapter 12 – Simple Machines
Work and Machines Work – energy transferred when a force makes an object move 2 conditions must apply for there to be work: The object must move Movement.
Chapter 12 – Work and Machines
High School Part 1 /2 by SSL Technologies Physics Ex-44 Click PART-2 /2 THE INCLINED-PLANE The inclined-plane is a simple machine that multiplies the.
Simple Machines and Mechanical Advantage
Simple Machines Give me a lever long enough, and a fulcrum on which to place it, and I will move the world. Aristotle.
Designing Simple Machines Using Mechanical and Ideal Mechanical Advantage.
WARM UP Have book on desk & ready for book check
Chapter 14: Machines.
The 6 Simple Machines Lever Pulley Wheel and Axle WedgeScrew Inclined Plane.
Work and Machines.
Simple Machines and Mechanical Advantage
Section 10.2 Machines  Objectives
Simple Machines Machines Lever Inclined plane Pulley Screw Wedge Wheel & axle.
The 6 Simple Machines Lever Pulley Wheel and Axle WedgeScrew Inclined Plane.
Lecture 21 Using Machines Ozgur Unal
Simple machines 6 types of simple machines, mechanical advantage of each type and compound machines.
Simple Machines Simple Machines Making Work Easier….YEAH!!!
Chapter 8 Work and Machines.
Simple Machines.
Work  The product of the force and distance when a force is used to move an object.
REVIEW Work Power and Machines. What Is Work? Key Concepts  Work is done on an object when the object moves in the same direction in which the force.
Machine- a device that makes work easier by changing the direction or size of the force.
Simple Machines Spring 2014.
Work and Machines. What is Work? Work is force times distance. To be exact, work is force times the distance moved in the direction of the force. The.
The 6 Simple Machines Lever Pulley Wheel and Axle WedgeScrew Inclined Plane.
Machine – device that makes work easier
The 6 Simple Machines Lever Pulley Wheel and Axle WedgeScrew Inclined Plane.
Simple Machines Simple Machines Making Work Easier….YEAH!!!
Section 15-4 : Simple and Compound Machines Effort Force – force applied to the machine Resistance Force – force the machine tries to overcome.
The 6 Simple Machines Screw Wedge Inclined Plane Pulley Wheel and Axle
How are simple machines similar and different?. Simple Machine A machine that does work with only one movement. Compound Machine A machine made up of.
JEOPARDY – work and Simple Machines Final Jeopardy Simple Machines.
Chapter 5 Machines and Mechanical Systems. Forces in Machines How do you move something that is too heavy to carry? How were the pyramids built? Simple.
Warm Up: 1/14/13  Give an example of a machine you use on a daily basis. Then say how you thinks it helps to make work easier.
The 6 Simple Machines Lever Pulley Wheel and Axle WedgeScrew Inclined Plane.
The 6 Simple Machines Lever Pulley Wheel and Axle WedgeScrew Inclined Plane.
GPS Standards S8CS5a: Observe and explain how parts can be related to other parts in a system such as the role of simple machines in complex (compound)
Welcome Back Minions!!! Warm up on the board…. Review Question What defines a machine? – 1) A device that allows you to do work in a way that is easier.
Work What is work? –Work is what happens when a force moves an object over a distance in the direction of the force. –Examples: Push a shopping cart Turn.
Chapter 11 work and machines. Anytime that you exert a force and cause an object to move in the direction of the applied force you do _________. work.
Chapter Sections: Section 1- What is Work? Section 1- What is Work? Section 2- Mechanical advantage and Efficiency Section 2- Mechanical advantage and.
Chapter 4.2 and 4.3 Machines.
The 6 Simple Machines Screw Wedge Inclined Plane Pulley Wheel and Axle
The 6 Simple Machines Screw Wedge Inclined Plane Pulley Wheel and Axle
The 6 Simple Machines Screw Wedge Inclined Plane Pulley Wheel and Axle
The 6 Simple Machines Screw Wedge Inclined Plane Pulley Wheel and Axle
Simple Machines and Mechanical Advantage
The 6 Simple Machines Lever Pulley Wheel and Axle WedgeScrew Inclined Plane.
The 6 Simple Machines Screw Wedge Inclined Plane Pulley Wheel and Axle
MACHINE NOTES.
The 6 Simple Machines Screw Wedge Inclined Plane Pulley Wheel and Axle
The 6 Simple Machines Screw Wedge Inclined Plane Pulley Wheel and Axle
The 6 Simple Machines Screw Wedge Inclined Plane Pulley Wheel and Axle
The 6 Simple Machines Screw Wedge Inclined Plane Pulley Wheel and Axle
The 6 Simple Machines Screw Wedge Inclined Plane Pulley Wheel and Axle
Chapter 8 Work and Machines.
THE 6 SIMPLE MACHINES Screw Wedge Inclined Plane Pulley Wheel and Axle
The 6 Simple Machines Screw Wedge Inclined Plane Pulley Wheel and Axle
The 6 Simple Machines Screw Wedge Inclined Plane Pulley Wheel and Axle
The 6 Simple Machines Screw Wedge Inclined Plane Pulley Wheel and Axle
The 6 Simple Machines Screw Wedge Inclined Plane Pulley Wheel and Axle
The 6 Simple Machines Screw Wedge Inclined Plane Pulley Wheel and Axle
The 6 Simple Machines Screw Wedge Inclined Plane Pulley Wheel and Axle
The 6 Simple Machines Screw Wedge Inclined Plane Pulley Wheel and Axle
The 6 Simple Machines Screw Wedge Inclined Plane Pulley Wheel and Axle
The 6 Simple Machines Screw Wedge Inclined Plane Pulley Wheel and Axle
The 6 Simple Machines Screw Wedge Inclined Plane Pulley Wheel and Axle
The 6 Simple Machines Screw Wedge Inclined Plane Pulley Wheel and Axle
Presentation transcript:

Simple Machines In a simple machine, input work is done by a person applying a single force, and the machine does output work also by means of a single force. Conservation of energy demands that the work input be equal to the sum of the work output and the heat lost to friction.

Definitions: Energy: Work= Force: Ability to do work Force x Distance A Push or a Pull

The 6 Simple Machines Screw Wedge Inclined Plane Pulley Wheel and Axle Lever

Inclined Plane

Inclined Plane The Egyptians used simple machines to build the pyramids. One method was to build a very long incline out of dirt that rose upward to the top of the pyramid very gently. The blocks of stone were placed on large logs and pushed slowly up the long, gentle inclined plane to the top of the pyramid.

Inclined Planes An inclined plane is a flat surface that is higher on one end. Inclined planes make the work of moving things easier – less force is required. A sloping surface, such as a ramp. An inclined plane can be used to alter the effort and distance involved in doing work, such as lifting loads. The trade-off is that an object must be moved a longer distance than if it was lifted straight up, but less force is needed. You can use this machine to move an object to a lower or higher place.  Inclined planes make the work of moving things easier.  You would need less energy and force to move objects with an inclined plane. 

Inclined Planes An inclined plane can be used to alter the force and distance involved in doing work, such as lifting loads. The trade-off is that an object must be moved a longer distance than if it were lifted straight up, but less force is needed.

Work input and output Work input is the amount of work done on a machine. (What work you did using it.) Input force x input distance Work output is the amount of work done by a machine. (What did the machine accomplish?) Output force x output distance Wout = Win Fout x Dout = Fin x Din Din Dout

Work input and output Wout = Win Din 15 m Fout x Dout = Fin x Din Dout Example: If you lift an object that weighs 10 N straight up 3 meters, the work required will be W = F x d = 10 N x 3 m = 30 J If you push it up this ramp, the work has to be the same amount. (Why?) But the force you have to exert will be less: Wout = Win Fout x Dout = Fin x Din 10N x 3m = 2N x 15m Din 15 m Dout 3 m Fin 10 N

Mechanical Advantage of any simple machine: The mechanical advantage, MA, is the ratio of Fout to Fin.

Mechanical Advantage of any simple machine: The mechanical advantage, MA, is the ratio of Fout to Fin. The mechanical advantage is also: MA = input distance output distance Can you see why?

Mechanical Advantage In our previous example, the output force is 10 N, the input force is 2 N. What is the mechanical advantage of this inclined plane? 15 m 3 m 2 N 10 N

Mechanical Advantage So… The advantage of using this inclined plane is that your force is multiplied by five. Wout = Win Fout x Dout = Fin x Din 10N x 3m = 2N x 15m Din 15 m Dout 3 m 2 N 10 N

So far, we’ve been talking about imaginary machines. In real life, Win will never equal Wout. (Why not?)

Remember Mechanical Advantage? What is the mechanical advantage of this inclined plane? The mechanical advantage you calculate using the distances is the ideal mechanical advantage. That’s what the mechanical advantage would be if there were no friction. 15 m 3 m

Remember Mechanical Advantage? The ideal mechanical advantage of this inclined plane is 5. In real life, it will be less than 5. To find the actual mechanical advantage, you need to try out the machine. AMA = Force out Force in 15 m 3 m

The Lever A lever shown here consists of input and output forces at different distances from a fulcrum. Fin Fout dout din Fulcrum Once again, the input work Fidi is equal to the output work Fodo.

3 Classes of Levers

Ideal Mechanical Advantage What is the ideal mechanical advantage if the rock is 2 meters from the fulcrum, and you push down 3 meters from the fulcrum?

Ideal Mechanical Advantage What is the ideal mechanical advantage if the rock is 2 meters from the fulcrum, and you push down 3 meters from the fulcrum? 1.5 How much force should be required if the rock weighs 30 N?

Actual Mechanical Advantage What is the actual mechanical advantage if the rock weighs 30 N, and you have to push down with 25 N of force?

In real-life Simple Machines… Input work = output work + work against friction Efficiency is defined as the ratio of work output to work input. Efficiency = Work output Work input

The efficiency is 80% or e = 0.80, therefore: 0.80 = Fout x dout Example The efficiency of a simple machine is 80%, and a 400-N weight is lifted a vertical height of 2 m. If an input force of 20 N is required, what distance must be covered by the input force? The efficiency is 80% or e = 0.80, therefore: 0.80 = Fout x dout Fin x din 0.80 = 400 N x 2 m 20 N x din

Practice Problem: Clyde, a stubborn 3500-N mule, refuses to walk into the barn, so Farmer McDonald must drag him up a 5.0 m ramp to his stall, which stand 0.50 m above ground level. What is the ideal MA of the ramp? If Farmer McDonald needs to exert a 450-N force on the mule to drag him up the ramp, what is the actual mechanical advantage? What is the efficiency of the ramp?

3. To find Fi we recall that Win = Wout F x d = F x d Example A 1-m metal lever is used to lift a 800-N rock. What force is required at the left end if the fulcrum is placed 20 cm from the rock? 1. Draw and label sketch: d1 d2 800 N F = ? 2. List given info: Fo = 800 N; d2 = 20 cm d1 = 100 cm - 20 cm = 80 cm 3. To find Fi we recall that Win = Wout F x d = F x d F x 80 = 800 x 20 F = 200 N

What is the mechanical advantage of the lever? Example A 1-m metal lever is used to lift a 800-N rock. What force is required at the left end if the fulcrum is placed 20 cm from the rock? d1 d2 800 N F = ? What is the mechanical advantage of the lever?

Screw A screw is an inclined plane wrapped around a pin. A screw “lifts” objects by pulling them together. The Mechanical Advantage of a screw is the length of thread (length of the inclined plane) over height of screw (hight of the inclined plane). MA = Distance In Distance Out MA = Thread Length Pin Length The longer the incline plane, the tighter the screw’s threads.

Wheel & Axel MA = Wheel Radius Axle Radius A simple machine consisting of an axle that is attached to a wheel. The torque (force) that is applied to the wheel is increased in the axel – which does the work on larger loads. Mechanical Advantage of a wheel and axle radius of wheel over radius of axle. MA = Wheel Radius Axle Radius

Everyday Wheel & Axles

Pulley The pulley is a wheel & axle designed to support a load with a cord about it’s circumference. Mechanical Advantage of a pulley is equal to the number of supporting strands

Ideal Mechanical Advantage of a wedge; sloping side over thickness A wedge is a simple machine used to separate two objects, or portions of objects, through the application of force. A wedge is made up of two inclined planes. These planes meet and form a sharp edge. This edge can split things apart. Wedges are used as either separating or holding devices. There are two major differences between inclined planes and wedges. First, in use, an inclined plane remains stationary while the wedge moves. Second, the effort force is applied parallel to the slope of an inclined plane, while the effort force is applied to the vertical edge (height) of the wedge. Ideal Mechanical Advantage of a wedge; sloping side over thickness