The Graph Structure of RDF Sentences

Slides:



Advertisements
Similar presentations
CS 253: Algorithms Chapter 22 Graphs Credit: Dr. George Bebis.
Advertisements

Analysis of Algorithms CS 477/677
Graphs CSCI 2720 Spring 2005.
Simple Graph Warmup. Cycles in Simple Graphs A cycle in a simple graph is a sequence of vertices v 0, …, v n for some n>0, where v 0, ….v n-1 are distinct,
第九章 重积分 返回 高等数学( XAUAT ) 典型例题 重点难点 练习题解答 习题课结构 高等数学( XAUAT ) 一、本章的重点、难点、此次 习题课达到的目的 重点:二重积分、三重积分的计算。 难点:二从重积分、三重积分计算中坐标系的选择,积分 次序的选择与定限 习题课达到的目的:熟练掌握二重积分的计算(直角坐标、
第五届海峡两岸图论与组合学学术 会议 1 Strongly quasi-Hamiltonian- connected multipartite tournament 陆玫 清华大学数学科学系 Work joined with Guo Yubao , Lehrstuhl C für.
Introduction to Graphs
Ontology Summarization Based on RDF Sentence Graph Written by: Xiang Zhang, Gong Cheng, Yuzhong Qu Presented by: Sophya Kheim.
Graphs G = (V,E) V is the vertex set. Vertices are also called nodes and points. E is the edge set. Each edge connects two different vertices. Edges are.
1 Section 8.4 Connectivity. 2 Paths In an undirected graph, a path of length n from u to v, where n is a positive integer, is a sequence of edges e 1,
Statistics 04-1 Testing for Differences. 平均数的显著性检验(样本与总体) 总体正态分布 总体方差已知 总体方差未知 总体非正态分布 平均数差异的显著性检验(总体与总体) 两组样本独立 两个总体方差 σ 1 2 、 σ 2 2 未知 两个总体方差不等 两组样本相关.
中国科学技术大学视觉计算与可视化实验室 讨论题目 _ 时间 讨论题目 演讲人: ** 指导教师: ** 老师 中国科学技术大学计算机学院 2005 年 6 月 28 日.
Graph. Data Structures Linear data structures: –Array, linked list, stack, queue Non linear data structures: –Tree, binary tree, graph and digraph.
Discrete Mathematics I 暨南大学 信息科学技术学院 计算机科学系 黄 战 副教授 离散数学 I (全英)
I’m going to be a basketball player.. computer programmer engineer baseball player.
© 2006 Pearson Addison-Wesley. All rights reserved14 A-1 Chapter 14 Graphs.
GRAPHS CSE, POSTECH. Chapter 16 covers the following topics Graph terminology: vertex, edge, adjacent, incident, degree, cycle, path, connected component,
Can you connect the dots as shown without taking your pen off the page or drawing the same line twice.
1 CS104 : Discrete Structures Chapter V Graph Theory.
图的点荫度和点线性荫度 马刚 山东大学数学院. The vertex arboricity va(G) of a graph G is the minimum number of colors that can be used to color the vertices of G so that each.
COSC 2007 Data Structures II Chapter 14 Graphs I.
ENGM 732 Formalization of Network Flows Network Flow Models.
一个大学生眼里的移动互联网. file://\\ibhks021\halfway\Template Design by HK Presentation\POWERPOINT TEMPLATE\Dubai\Slide_v1.psd file://\\ibhks021\halfway\Template.
中国知网数字图书馆 增值服务介绍 同方知网 张丽华. 全部文献报表 全部文献报表 中国工程院院士(本所专家) 中国工程院院士(本所专家) 本所专利及相关水产标准专利成果 本所专利及相关水产标准专利成果 海洋可捕资源与生态系统 海洋可捕资源与生态系统 海水养殖生态与容纳量 海水养殖生态与容纳量 海水养殖生物疾病控制与分子病理.
Graphs A graphs is an abstract representation of a set of objects, called vertices or nodes, where some pairs of the objects are connected by links, called.
Graph theory and networks. Basic definitions  A graph consists of points called vertices (or nodes) and lines called edges (or arcs). Each edge joins.
Homework #5 Due: October 31, 2000 Christine Kang Graph Concepts and Algorithms.
Data Structures & Algorithms Graphs Richard Newman based on book by R. Sedgewick and slides by S. Sahni.
Graphs 황승원 Fall 2010 CSE, POSTECH. 2 2 Graphs G = (V,E) V is the vertex set. Vertices are also called nodes and points. E is the edge set. Each edge connects.
GRAPHS. Graph Graph terminology: vertex, edge, adjacent, incident, degree, cycle, path, connected component, spanning tree Types of graphs: undirected,
冯熙铉. What CS means to you? CS = AC? WA? What CS means to you? CS = AC? WA? CS = Programming?
英语写作教学课件. 如何列提纲 一篇作文常包括四个部分 引子( 1-2 句) 引子( 1-2 句) 导入( 1 句) 导入( 1 句) 正文(数句) 正文(数句) 结束语( 1-2 句) 结束语( 1-2 句)
表内除法(一) 用 2 ~ 6 的乘法口诀 求商( 2 ). 填一填,并说出用哪句乘法口诀。 12÷6 = 6÷2 = 12÷4 = 8÷4 = 9÷3 = 10÷2 = ×7 = 6×6 = 7×2 = 4×8 = 5×6 = 7×4 =
Graphs. Contents Terminology Graphs as ADTs Applications of Graphs.
Graph Concepts and Algorithms Using LEDA By Caroline Moore and Carmen Frerichs (252a-at and 252a-ao) each graph in the presentation was created using gw_basic_graph_algorithms.
Graph Concepts Elif Tosun 252a-aa (All graphics created by using demo/graphwin/gw*)
Graphs Definition: a graph is an abstract representation of a set of objects where some pairs of the objects are connected by links. The interconnected.
Chapter 05 Introduction to Graph And Search Algorithms.
Graph Concepts Illustrated Using The Leda Library Amanuel Lemma CS252 Algorithms.
CSC 252: Algorithms October 28, 2000 Homework #5: Graphs Victoria Manfredi (252a-ad) notes: -Definitions for each of the graph concepts are those presented.
NLP&CC 2012 报告人:许灿辉 单 位:北京大学计算机科学技术研究所 Integration of Text Information and Graphic Composite for PDF Document Analysis 基于复合图文整合的 PDF 文档分析 Integration of.
SCI 数据库检索练习参考 本练习完全依照 SCI 数据库实际检索过程而 实现。 本练习完全依照 SCI 数据库实际检索过程而 实现。 练习中,选择了可以举一反三的题目,读 者可以根据题目进行另外的检索练习,如: 可将 “ 与 ” 运算检索改为 “ 或 ” 、 “ 非 ” 运算检索 等等。 练习中,选择了可以举一反三的题目,读.
Graph Terms By Susan Ott. Vertices Here are 7 vertices without any edges Each Vertex is labeled a different color and number.
Lecture 20. Graphs and network models 1. Recap Binary search tree is a special binary tree which is designed to make the search of elements or keys in.
Leda Demos By: Kelley Louie Credits: definitions from Algorithms Lectures and Discrete Mathematics with Algorithms by Albertson and Hutchinson graphics.
CSC 252 Pallavi Moorthy Homework 5. 1.) Vertices, edges From cd../../handout/demo/graph_alg/gw_shortest_path.
邹权 (PH.D.&Professor) 天津大学 计算机科学与技术学院
Graph Graphs and graph theory can be used to model:
Google China Faculty Summit
Graphs and Graph Models
Data Structures & Algorithms Digraphs and DAGs
Weiyi Ge, Gong Cheng, Huiying Li, Yuzhong Qu
Graph Operations And Representation
瞿裕忠(Yuzhong Qu) 计算机科学与技术系
Connectivity Section 10.4.
Graphs.
10.1 Graphs and Graph Models
Section 2-5 What Are Graphs?
Qingxia Liu A Generative Interpretation of RDF Dataset  and its Application in Summarization Qingxia Liu 2019/4/6.
Graphs By Rajanikanth B.
Data Structures & Algorithms Digraphs and DAGs
DiGraph Definitions Adjacency Matrix Adjacency List
Graphs.
Graphs G = (V, E) V are the vertices; E are the edges.
Reading Report Semantic Parsing (续)
An Introduction to Quantum Computation
第八届全国复杂网络学术会议 Spectra of transition matrix for networks: Computation and applications 章 忠 志 复旦大学计算机科学技术学院 Homepage:
Introduction to Graph Theory
Space complexity 姚鹏晖 助教: 刘明谋 答疑时间: 周四 2pm-4pm, 计算机科学与技术楼 502
瞿裕忠(Yuzhong Qu) 计算机科学与技术系
Presentation transcript:

The Graph Structure of RDF Sentences 瞿裕忠(Yuzhong Qu) yzqu@nju.edu.cn 计算机科学与技术系

引言 An empirical study on the graph structure of RDF Sentences in the Web of Data The structural nature of RDF sentences in the Linked Data

Terminology RDF sentence, G

Terminology Statistics Cumulative distribution of RDF sentences over RDF docs 包含  k 个RDF句子的文档 (百分数) Cumulative distribution of non-trivial RDF sentences over RDF docs 包含  k 个非平凡RDF句子的文档 (百分数) Black nodes over(non-trivial)RDF sentences 包含  k 个black nodes 的(非平凡)句子 (百分数) RDF triples over non-trivial RDF sentences 包含  k 个triples的非平凡句子 (百分数)

Terminology A digraph is called "simple" if it has no loops, and no multiple arcs (arcs with same starting and ending nodes) A directed graph is an oriented simple graph if and only if it has neither self-loops nor 2-cycles. Simple, oriented simple Self-loop? Multiple arcs? Cycles of length 2?

Terminology Skeleton subgraph, GS Black node subgraph, GB removing literal nodes Black node subgraph, GB induced subgraph by black nodes

Terminology A digraph is called "simple" if it has no loops, and no multiple arcs (arcs with same starting and ending nodes) A directed graph is an oriented simple graph if and only if it has neither self-loops nor 2-cycles. Self-loop in GB Multiple arcs in GB/GS/G? Cycles of length 2 in GB/GS?

Terminology Start point: all other vertices are reachable from it Start points in G = Start points in GS ? # start points in GS ? # start points in GB

Terminology U(GS): Underlying graph of GS U(GB): Underlying graph of GB Linear, Tree, Graph with cycles

Q&A http://ws.nju.edu.cn/RDF_sentences