EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2010

Slides:



Advertisements
Similar presentations
CMOS Fabrication EMT 251.
Advertisements

EE 5340 Semiconductor Device Theory Lecture 6 - Fall 2010 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 5 - Fall 2009 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 6 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 06 – Spring 2011 Professor Ronald L. Carter
Fabrication of p-n junction in Si Silicon wafer [1-0-0] Type: N Dopant: P Resistivity: Ω-cm Thickness: µm.
EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter
1. A clean single crystal silicon (Si) wafer which is doped n-type (ColumnV elements of the periodic table). MOS devices are typically fabricated on a,
EE 5340 Semiconductor Device Theory Lecture 13 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2010 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter
INTEGRATED CIRCUITS Dr. Esam Yosry Lec. #4. Ion Implantation  Introduction  Ion Implantation Process  Advantages Compared to Diffusion  Disadvantages.
EE 5340 Semiconductor Device Theory Lecture 07 – Spring 2011 Professor Ronald L. Carter
Introduction EE1411 Manufacturing Process. EE1412 What is a Semiconductor? Low resistivity => “conductor” High resistivity => “insulator” Intermediate.
Spencer/Ghausi, Introduction to Electronic Circuit Design, 1e, ©2003, Pearson Education, Inc. Chapter 3, slide 1 Introduction to Electronic Circuit Design.
IC Processing. Initial Steps: Forming an active region Si 3 N 4 is etched away using an F-plasma: Si3dN4 + 12F → 3SiF 4 + 2N 2 Or removed in hot.
CORPORATE INSTITUTE OF SCIENCE & TECHNOLOGY, BHOPAL DEPARTMENT OF ELECTRONICS & COMMUNICATIONS NMOS FABRICATION PROCESS - PROF. RAKESH K. JHA.
©2008 R. Gupta, UCSD COSMOS Summer 2008 Chips and Chip Making Rajesh K. Gupta Computer Science and Engineering University of California, San Diego.
Semiconductor Device Modeling and Characterization – EE5342 Lecture 5 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011 Professor Ronald L. Carter
Fundamentals of Semiconductor Physics 万 歆 Zhejiang Institute of Modern Physics Fall 2006.
EE 5340 Semiconductor Device Theory Lecture 27 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 04 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 6 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2009 Professor Ronald L. Carter
Introduction to Silicon Processing Dr Vinod V. Thomas SMIEEE Ref: Section 2.2 ASICs : MJS Smith.
EE 5340 Semiconductor Device Theory Lecture 10 – Fall 2010 Professor Ronald L. Carter
CMOS Fabrication EMT 251.
Semiconductor Device Modeling and Characterization – EE5342 Lecture 4 – Spring 2011 Professor Ronald L. Carter
Solid State Devices EE 3311 SMU
Professor Ronald L. Carter
CMOS Fabrication CMOS transistors are fabricated on silicon wafer
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 06 – Spring 2011
Professor Ronald L. Carter
Professor Ronald L. Carter
Silicon Wafer cm (5’’- 8’’) mm
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2009
Lecture #25 OUTLINE Device isolation methods Electrical contacts to Si
EE 5340 Semiconductor Device Theory Lecture 04 – Spring 2011
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 5 - Fall 2003
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 27 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 23 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 9 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 07 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 6 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 13 – Spring 2011
CSE 87 Fall 2007 Chips and Chip Making
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 20 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011
Semiconductor Device Modeling & Characterization Lecture 23
Basic Planar Process 1. Silicon wafer (substrate) preparation
Presentation transcript:

EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc

Second Assignment Please print and bring to class a signed copy of the document appearing at http://www.uta.edu/ee/COE%20Ethics%20Statement%20Fall%2007.pdf L07 13Sep10

Silicon Planar Process1 M&K1 Fig. 2.1 Basic fabrication steps in the silicon planar process: (a) oxide formation, (b) oxide removal, (c) deposition of dopant atoms, (d) diffusion of dopant atoms into exposed regions of silicon. L07 13Sep10

LOCOS Process1 1Fig 2.26 LOCal Oxidation of Silicon (LOCOS). (a) Defined pattern consisting of stress-relief oxide and Si3N4 where further oxidation is not desired, (b) thick oxide layer grown over the bare silicon region, (c) stress-relief oxide and Si3N4 removed by etching, (d) scanning electron micrograph (5000 X) showing LOCOS-processed wafer at (b). L07 13Sep10

Al Interconnects1 1Figure 2.33 (p. 104) A thin layer of aluminum can be used to connect various doped regions of a semiconductor device. 1 L07 13Sep10

Ion Implantation1 1Figure 2.15 (p. 80) In ion implantation, a beam of high-energy ions strikes selected regions of the semiconductor surface, penetrating into these exposed regions. L07 13Sep10

Phosphorous implant Range (M&K1 Figure 2 Phosphorous implant Range (M&K1 Figure 2.17) Projected range Rp and its standard devia-tion DRp for implantation of phosphorus into Si, SiO2, Si3N4, and Al [M&K ref 11]. L07 13Sep10

Implant and Diffusion Profiles Figure 2.211 Complementary-error-function and Gaussian distribu-tions; the vertical axis is normalized to the peak con-centration Cs, while the horizon-tal axis is normal-ized to the char-acteristic length L07 13Sep10

Diffused or Implanted IC Resistor (Fig 2.451) L07 13Sep10

An IC Resistor with L = 8W (M&K)1 L07 13Sep10

Typical IC doping profile (M&K Fig. 2.441) L07 13Sep10

Mobilities** L07 13Sep10

IC Resistor Conductance L07 13Sep10

An IC Resistor with Ns = 8, R = 8Rs (M&K)1 L07 13Sep10

The effect of lateral diffusion (M&K1) L07 13Sep10

A serpentine pattern IC Resistor (M&K1) R = NSRS + 0.65NCRS note: RC = 0.65RS L07 13Sep10

References 1 and M&KDevice Electronics for Integrated Circuits, 2 ed., by Muller and Kamins, Wiley, New York, 1986. See Semiconductor Device Fundamentals, by Pierret, Addison-Wesley, 1996, for another treatment of the m model. 2Physics of Semiconductor Devices, by S. M. Sze, Wiley, New York, 1981. 3Semiconductor Physics & Devices, 2nd ed., by Neamen, Irwin, Chicago, 1997. L07 13Sep10