Objectives Apply SSS and SAS to construct triangles and solve problems. Prove triangles congruent by using SSS and SAS.

Slides:



Advertisements
Similar presentations
Triangle Congruence: SSS and SAS
Advertisements

1 Objectives Define congruent polygons Prove that two triangles are congruent using SSS, SAS, ASA, and AAS shortcuts.
CONGRUENT TRIANGLES.
4-3, 4-4, and 4-5 Congruent Triangles Warm Up Lesson Presentation
Warm Up 1. Name the angle formed by AB and AC. 2.Name the three sides of ABC. 3. ∆ QRS  ∆ LMN. Name all pairs of congruent corresponding parts. Possible.
Warm Up Lesson Presentation Lesson Quiz.
4-6 Triangle Congruence: SSS and SAS Section 4.6 Holt Geometry
Do Now 1. ∆ QRS  ∆ LMN. Name all pairs of congruent corresponding parts. 2.Find the equation of the line through the points (3, 7) and (5, 1) QR  LM,
1. Name the angle formed by AB and AC.
Warm Up 1. Name the angle formed by AB and AC.
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Holt McDougal Geometry 4-5 Triangle Congruence: SSS and SAS 4-5 Triangle Congruence: SSS and SAS Holt Geometry Warm Up Warm Up Lesson Presentation Lesson.
Chapter congruent triangle : SSS and SAS. SAT Problem of the day.
Apply SSS and SAS to construct triangles and solve problems. Prove triangles congruent by using SSS and SAS. Objectives.
Example: Using Corresponding Parts of Congruent Triangles Given: ∆ABC  ∆DBC. Find the value of x.  BCA and  BCD are rt.  s.  BCA   BCD m  BCA =
4.6 Congruent Triangles SSS and SAS. Example 1: Verifying Triangle Congruence Show that the triangles are congruent for the given value of the variable.
Holt Geometry 4-4 Triangle Congruence: SSS and SAS Apply SSS and SAS to construct triangles and solve problems. Prove triangles congruent by using SSS.
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Holt McDougal Geometry 4-5 Triangle Congruence: SSS and SAS 4-5 Triangle Congruence: SSS and SAS Holt Geometry Warm Up Warm Up Lesson Presentation Lesson.
6.2 Proving Quadrilaterals are Parallelograms. Theorems If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a.
Proving Triangles are Congruent: SSS, SAS
Unit 4: Triangle Congruence 4.4 Triangle Congruence: SAS.
4-3 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Prove: ∆CDF ∆EDF Given: DF bisects CE, DC DE C F E D ANSWER
7-3 Triangle Similarity I CAN -Use the triangle similarity theorems to
EXAMPLE 3 Use the Hypotenuse-Leg Congruence Theorem Write a proof.
Triangle Similarity: 7-3 AA, SSS, and SAS Warm Up Lesson Presentation
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Prove: ∆CDF ∆EDF Given: DF bisects CE, DC DE C F E D ANSWER
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Geometry A Bellwork 3) Write a congruence statement that indicates that the two triangles are congruent. A D B C.
Prove: ∆CDF ∆EDF Given: DF bisects CE, DC DE C F E D ANSWER
Warm Up Lesson Presentation Lesson Quiz
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Triangle Congruence: SSS and SAS
Pearson Unit 1 Topic 4: Congruent Triangles 4-2: Triangle Congruence by SSS and SAS Pearson Texas Geometry ©2016 Holt Geometry Texas ©2007.
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Proving Triangles Congruent
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Objective Use CPCTC to prove parts of triangles are congruent.
Warm-Up Find the value of x: 30° 40° x° x° 35° 25° 74° 44° x°
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Warm Up 1. Name the angle formed by AB and AC.
Warm-Up: Perspective drawing
Learning Targets I will apply the SSS and SAS Postulates to construct triangles and solve problems. I will prove triangles congruent by using the SSS and.
Sec 4.6: Triangle Congruence: SSS and SAS
5.3 Vocabulary included angle triangle rigidity
Proving Triangles Congruent
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Objectives Apply SSS and SAS to construct triangles and solve problems. Prove triangles congruent by using SSS and SAS.
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Proving Triangles Congruent
Proving Triangles Congruent
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Module 1 Topic D – Lesson 24 Warm Up
7-3 Triangle Similarity I CAN -Use the triangle similarity theorems to
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Prove: ∆CDF ∆EDF Given: DF bisects CE, DC DE C F E D ANSWER
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Objectives Apply SAS to construct triangles and solve problems.
Congruent Triangles. Congruence Postulates.
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Objectives Apply SSS to construct triangles and solve problems.
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Presentation transcript:

Objectives Apply SSS and SAS to construct triangles and solve problems. Prove triangles congruent by using SSS and SAS.

For example, you only need to know that two triangles have three pairs of congruent corresponding sides. This can be expressed as the following postulate.

Adjacent triangles share a side, so you can apply the Reflexive Property to get a pair of congruent parts. Remember!

Example 1: Using SSS to Prove Triangle Congruence Use SSS to explain why ∆ABC  ∆DBC. It is given that AC  DC and that AB  DB. By the Reflexive Property of Congruence, BC  BC. Therefore ∆ABC  ∆DBC by SSS.

It is given that AB  CD and BC  DA. Check It Out! Example 1 Use SSS to explain why ∆ABC  ∆CDA. It is given that AB  CD and BC  DA. By the Reflexive Property of Congruence, AC  CA. So ∆ABC  ∆CDA by SSS.

An included angle is an angle formed by two adjacent sides of a polygon. B is the included angle between sides AB and BC.

The letters SAS are written in that order because the congruent angles must be between pairs of congruent corresponding sides. Caution

Example 2: Engineering Application The diagram shows part of the support structure for a tower. Use SAS to explain why ∆XYZ  ∆VWZ. It is given that XZ  VZ and that YZ  WZ. By the Vertical s Theorem. XZY  VZW. Therefore ∆XYZ  ∆VWZ by SAS.

Use SAS to explain why ∆ABC  ∆DBC. Check It Out! Example 2 Use SAS to explain why ∆ABC  ∆DBC. It is given that BA  BD and ABC  DBC. By the Reflexive Property of , BC  BC. So ∆ABC  ∆DBC by SAS.

Example 3A: Verifying Triangle Congruence Show that the triangles are congruent for the given value of the variable. ∆MNO  ∆PQR, when x = 5. PQ = x + 2 = 5 + 2 = 7 QR = x = 5 PR = 3x – 9 = 3(5) – 9 = 6 PQ  MN, QR  NO, PR  MO ∆MNO  ∆PQR by SSS.

Check It Out! Example 3 Show that ∆ADB  ∆CDB, t = 4. DA = 3t + 1 = 3(4) + 1 = 13 DC = 4t – 3 = 4(4) – 3 = 13 mD = 2t2 = 2(16)= 32° ADB  CDB Def. of . DB  DB Reflexive Prop. of . ∆ADB  ∆CDB by SAS.

Given: QP bisects RQS. QR  QS Check It Out! Example 4 Given: QP bisects RQS. QR  QS Prove: ∆RQP  ∆SQP Statements Reasons 1. QR  QS 1. Given 2. QP bisects RQS 2. Given 3. RQP  SQP 3. Def. of bisector 4. QP  QP 4. Reflex. Prop. of  5. ∆RQP  ∆SQP 5. SAS Steps 1, 3, 4