Phenomenology of Non-minimal SUSY Models

Slides:



Advertisements
Similar presentations
Fine Tuning Standard Model and Beyond Peter Athron Dr David Miller In collaboration with.
Advertisements

THE FINE-TUNING PROBLEM IN SUSY AND LITTLE HIGGS
Kiwoon Choi PQ-invariant multi-singlet NMSSM
Peter Athron David Miller In collaboration with Measuring Fine Tuning.
Peter Athron David Miller In collaboration with Fine Tuning In Supersymmetric Models.
Peter Athron David Miller In collaboration with Quantifying Fine Tuning (arXiv: )
The minimal B-L model naturally realized at TeV scale Yuta Orikasa(SOKENDAI) Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
Higgs Boson Mass In Gauge-Mediated Supersymmetry Breaking Abdelhamid Albaid In collaboration with Prof. K. S. Babu Spring 2012 Physics Seminar Wichita.
Comprehensive Analysis on the Light Higgs Scenario in the Framework of Non-Universal Higgs Mass Model M. Asano (Tohoku Univ.) M. Senami (Kyoto Univ.) H.
Beyond MSSM Baryogenesis Kfir Blum and Yosef Nir, Phys.Rev.D78:035005,2008.
Higgs Boson Mass In SUSY Seesaw Model Jin Min Yang Based on: Cao, Yang , Phys. Rev. D 71, ( 2005 ) [ hep-ph/ ] Institute of Theoretical Physics,
Richard Howl The Minimal Exceptional Supersymmetric Standard Model University of Southampton UK BSM 2007.
Minimal Supersymmetric Standard Model (MSSM) SM: 28 bosonic d.o.f. & 90 (96) fermionic d.o.f. SUSY: # of fermions = # of bosonsN=1 SUSY: There are no particles.
REHEATING TEMPERATURE IN GAUGE MEDIATION MODELS AND COMPRESSED PARTICLE SPECTRUM Olechowski, SP, Turzynski, Wells (ABOUT RECONCILING SUPERSYMMETRIC DARK.
Constrained MSSM Unification of the gauge couplings Radiative EW Symmetry Breaking Heavy quark and lepton masses Rare decays (b -> sγ, b->μμ) Anomalous.
 Collaboration with Prof. Sin Kyu Kang and Prof. We-Fu Chang arXiv: [hep-ph] submitted to JHEP.
超对称的现状和未来探索 杨 金 民杨 金 民杨 金 民杨 金 民 中国科大 中科院理论物理所.
Powerpoint Templates Page 1 Powerpoint Templates Looking for a non standard supersymmetric Higgs Guillaume Drieu La Rochelle, LAPTH.
Center for theoretical Physics at BUE
1 Electroweak Baryogenesis and LC Yasuhiro Okada (KEK) 8 th ACFA LC workshop July 12, 2005, Daegu, Korea.
STANDARD MODEL. Theoretical Constraints on Higgs Mass Large M h → large self-coupling → blow up at low-energy scale Λ due to renormalization Small: renormalization.
2. Two Higgs Doublets Model
Wednesday, Apr. 23, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #24 Wednesday, Apr. 23, 2003 Dr. Jae Yu Issues with SM picture Introduction.
Supersymmetric Models with 125 GeV Higgs Masahiro Yamaguchi (Tohoku University) 17 th Lomonosov Conference on Elementary Particle Physics Moscow State.
Neutralino Dark Matter in Light Higgs Boson Scenario (LHS) The scenario is consistent with  particle physics experiments Particle mass b → sγ Bs →μ +
NMSSM & B-meson Dileptonic Decays Jin Min Yang ITP, Beijing arXiv: Heng, Wang, Oakes, Xiong, JMY 杨 金 民杨 金 民.
1 Supersymmetry Yasuhiro Okada (KEK) January 14, 2005, at KEK.
Natural Solution to the Supersymmetry Electroweak Fine-Tuning Problem Tianjun Li Institute of Theoretical Physics, Chinese Academy of Sciences Yellow Mountain,
WHAT BREAKS ELECTROWEAK SYMMETRY ?. We shall find the answer in experiments at the LHC? Most likely it will tells us a lot about the physics beyond the.
SUSY after LHC 2011 Data: A Brief Look 重庆 杨 金 民 中国科学院 理论物理研究所.
SUSY in the sky: supersymmetric dark matter David G. Cerdeño Institute for Particle Physics Phenomenology Based on works with S.Baek, K.Y.Choi, C.Hugonie,
1 Gauge-singlet dark matter in the left-right symmetric model with spontaneous CP violation 郭万磊 中国科学院理论物理研究所 CPS 2008, JiNan , W.L. Guo, L.M.
Nobuchika Okada The University of Alabama Miami 2015, Fort Lauderdale, Dec , GeV Higgs Boson mass from 5D gauge-Higgs unification In collaboration.
Supersymmetry Basics: Lecture II J. HewettSSI 2012 J. Hewett.
Supersymmetric B-L Extended Standard Model with Right-Handed Neutrino Dark Matter Nobuchika Okada Miami Fort Lauderdale, Dec , 2010 University.
DIS2003 A.Tilquin Searches for Physics Beyond the Standard Model at LEP What is the Standard Model Why to go beyond and how Supersymmetry Higgs sector.
Durmu ş Ali Demir İ zmir Institute of Technology Reasons for … Results from … Extra U(1) in SUSY.
新学術領域研究 先端加速器LHCが切り拓くテラスケールの素粒子物理学 ~真空と時空への新たな挑戦~ 研究会 2013年5月23日〜25日
Phenomenology of NMSSM in TeV scale mirage mediation
Charged Higgs boson decay in supersymmetric TeV scale seesaw model
Unified Modes and Collider Experiments
Origin of large At in the MSSM with extra vector-like matters
Classically conformal B-L extended Standard Model
WHAT IS Msusy? I am grateful to the Organisers for this title! I understand it reflects certain frustration….
Generating Neutrino Mass & Electroweak Scale Radiatively
Dark Matter Phenomenology of the GUT-less CMSSM
SUSY searches 11 papers completed Completely solves hierarchy problem
Dark Matter: A Mini Review
Grand Unified Theories and Higgs Physics
Fine Tuning In Supersymmetric Models
MSSM4G: MOTIVATIONS AND ALLOWED REGIONS
Collider Phenomenology of SUSY Cosmic Connections &
NMSSM & B-meson Dileptonic Decays
Higgs and SUSY at future colliders
The Constrained E6SSM TexPoint fonts used in EMF.
The MESSM The Minimal Exceptional Supersymmetric Standard Model
The Graduate University for Advanced Studies Masaki Asano hep-ph/
SUSY Dark Matter in light of CDMS/XENON Results
Thermal sneutrino dark matter in an inverse seesaw model
Electroweak Baryogenesis and LC
Baryogenesis at Electroweak scale
Physics at a Linear Collider
非最小超对称唯象研究: 工作汇报 杨 金 民 中科院 理论物理所 南开大学.
Electric Dipole Moments in PseudoDirac Gauginos
CEPC-Physics Workshop
Analysis of enhanced effects in MSSM from the GUT scale
Probing bino-wino coannihilation DM at the LHC
Unique Higgs boson colliders hep-ph/
Dark Matter Explanation in Singlet Extension of MSSM
Institute of Theoretical Physics, CAS
Presentation transcript:

Phenomenology of Non-minimal SUSY Models Jin Min Yang 杨 金 民 Institute of Theoretical Physics, Academia Sinica, Beijing 中国科学院 理论物理研究所 2009.10.22 国立清华大学

NMSSM SUSY nMSSM MSSM SUSY arXiv: 0810.0751 , in JHEP , Cao, Yang arXiv: 0810.0989 , in PRD , Cao, Yang   SUSY arXiv: 0901.1437, in PRD(R), Cao, Logan, Yang  arXiv: 0901.3818, in PLB, Wang, Xiong, Yang MSSM nMSSM arXiv: 0908.0486, in JHEP,  Wang, Xiong, Yang, Yu arXiv: 0801.1169, in PRD, Heng, Oakes, Wang, Xiong, Yang  SUSY

Outline 1. Models: MSSM,NMSSM,nMSSM 2. Phenomenology Studies 2.1 Current expt constraints 2.2 Allowed parameter space 2.3 Zbb anomaly 2.4 B-meson FCNC decays 2.5 Residual effects of heavy SUSY 2.6 Explain PAMELA 3、Conclusion

1. SUSY Models SUSY GUT Fine-Tuning Dark Matter Electroweak Inflation Baryogenesis Inflation Affleck-Dine Baryogenesis

SUSY |B |F

R-conserving SUSY Models MSSM, CMSSM (mSUGRA, GMSB, AMSB) NMSSM,nMSSM Split-SUSY · · · R-violating SUSY Models

MSSM NMSSM, nMSSM CMSSM -problem little hierarchy

-problem in MSSM: =0 dimensionful parameter conserving SUSY should be at Planck scale or 0 chargino is too light =0 only one Higgs-doublet gets vev

little hierarchy in MSSM: Experimental lower bound need sizable loop effects ! mh  114 GeV (95 GeV) Theoretical upper bound mh  90 GeV (tree-level) ~ 500 GeV  135 GeV (loop-level) 100 GeV

MSSM + singlet NMSSM, nMSSM: Dynamical solution to -problem Solve little hierarchy problem Field Content: MSSM + singlet no dimensionful parameter (NMSSM) SUSY-conserving part: naturally small dimensionful parameter (nMSSM) SUSY breaking ( < TeV ) dimensionful soft parameters (TeV) SUSY-breaking part: trigger EWSB ( < TeV ) generate -term ( < TeV )

motivated from top-down view ? E6 models (superstring-inspired) string scale SO(10)  U(1)  … at low energy: S, Hu, Hd + heavy particles U(1) global PQ cubic term (NMSSM) to break U(1) PQ tadpole (nMSSM)

NMSSM Superpotential: U(1)B: Q(1/3), U(-1/3), D(-1/3), L(0), E(0), Hu(0), Hd(0), S(0) U(1)L: Q(0), U(0), D(0), L(1), E(-1), Hu(0), Hd(0), S(0) U(1)R: Q(1), U(1), D(1), L(1), E(1), Hu(1), Hd(1), S(1), W(3) 0 U(1)PQ: Q(-1), U(0), D(0), L(-1), E(0), Hu(1), Hd(1), S(-2) Scalor Potential: U(1)R  Z3 (non-R) U(1)R ( A0, A0 ):PGB

Z3 ( X  ei2/3 X ) domain wall NMSSM domain wall: SSB domain wall must disappear before BBN So we need Z3-breaking term in Veff impose discrete R-symmetry on W introduce high-order non-renormalizable operator to W multi-loop large enough to break Z3 too small to upset gauge hierarchy

nMSSM Superpotential: U(1)B: Q(1/3), U(-1/3), D(-1/3), L(0), E(0), Hu(0), Hd(0), S(0) U(1)L: Q(0), U(0), D(0), L(1), E(-1), Hu(0), Hd(0), S(0) U(1)R: Q(1), U(1), D(1), L(1), E(1), Hu(0), Hd(0), S(2), W(2)  0 U(1)PQ: Q(-1), U(0), D(0), L(-1), E(0), Hu(1), Hd(1), S(-2) U(1)R  Z2 matter parity

+ MSSM Spectrum of NMSSM/nMSSM: One more CP-odd Higgs (A1 or a ) One more CP-even Higgs One more neutralino

How to solve -problem ? V Before SUSY breaking SUSY vacuum: Vmin = 0 〈  〉 = 0  EW not broken; no  term With SUSY breaking (TeV) dimensionful soft parameters (TeV) V non-SUSY vacuum: Vmin < 0 〈  〉  0 SUSY breaking ( < TeV )  trigger EWSB ( < TeV ) generate -term ( < TeV )

How to solve little hierarchy ? mh theoretical upper bound MSSM: NMSSM: mh experimental lower bound suppressed ! has singlet component suppressed !

2.Phenomenology Studies 2.1 Expt Constraints (1) direct bounds: LEP I LEP II Tevatron LEP II

true (physical) vaccum (2) Stability of Higgs Potential true (physical) vaccum local vaccum  (3) Cosmic Dark Matter (WMAP)

(4) Precision Electroweak Data 1 , 2 , 3 (S, T, U) Rb = (Zbb)/  (Zhadrons) SUSY

(6)  g-2   

Under all above constraints scan over parameter space to find out the allowed part display the allowed part predict FCNC B-decay can solve Zbb anomaly ? residual SUSY effects explain Pamela ?

2.2 Allowed Parameter Space NMSSM Higgs Dark Matter arXiv: 0810.0989 , in PRD , Cao, Yang  

nMSSM Dark Matter Higgs Decays arXiv: 0901.1437, in PRD(R), Cao, Logan, Yang 

2.3 Zbb anomaly arXiv: 0810.0751 , in JHEP , Cao, Yang  

2.4 FCNC B -Decays SUSY SUSY arXiv: 0801.1169, in PRD, Heng, Oakes, Wang, Xiong, Yang 

expt data no expt data

 NMSSM Sky-blue points excluded by

 NMSSM Sky-blue points excluded by

2.5 Residual Effects of Heavy SUSY Heavy sparticles can leave over sizable quantum effects in the light Higgs sector arXiv: 0901.3818, in PLB, Wang, Xiong, Yang

NMSSM

2.6 To Explain PAMELA NMSSM No! nMSSM OK ! --Pamela+Relic density via Sommerfeld Enhance NMSSM nMSSM No! LSP mass in a narrow range No light particles to give SE general singlet extension of MSSM: OK !

General singlet extension of MSSM:   Final states h ~ GeV, a < 0.5 GeV singlet-like Sommerfeld enhancement

h ~ GeV , a < 0.5 GeV arXiv: 0908.0486, in JHEP,  Wang, Xiong, Yang, Yu

Sommerfeld enhancement

PAMELA arXiv: 0906.0362 Hooper, Tait

Implication on SM-like Higgs decay:

other visible modes (like ) are supressed

3. Conclusion NMSSM, nMSSM, General Singlet Extension Precision Electroweak Data Rb Zbb anomaly B-meson FCNC decays Residual effects of heavy SUSY Higgs Decays  g-2 Dark Matter Relic Density . . . . . . . . . PAMELA

温家宝: 屈原: 天 问 一个民族有一些关注天空的人, 他们才有希望; 一个民族只是关心脚下的事情, 那是没有未来的。 一个民族有一些关注天空的人, 他们才有希望; 一个民族只是关心脚下的事情, 那是没有未来的。 屈原: 天 问 遂古之初 谁传道之 上下未形 何由考之 冥昭瞢暗 谁能极之 冯翼惟象 何以识之 明明暗暗 惟时何为 阴阳三合 何本何化。