Study of SHE at the GSI – SHIP

Slides:



Advertisements
Similar presentations
Accelerator Physics, JU, First Semester, (Saed Dababneh).
Advertisements

Deep inelastic reactions 238 U 248 Cm primary fragments superheavy isotope 208 Pb 278 Sg fission V. Zagrebaev and W. Greiner, 2007.
SYNTHESIS OF SUPER HEAVY ELEMENTS
The fission of a heavy fissile nucleus ( A, Z ) is the splitting of this nucleus into 2 fragments, called primary fragments A’ 1 and A’ 2. They are excited.
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
The peculiarities of the production and decay of superheavy nuclei M.G.Itkis Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia.
J.H. Hamilton 1, S. Hofmann 2, and Y.T. Oganessian 3 1 Vanderbilt University, 2 GSI 3 Joint Institute for Nuclear Research ISCHIA 2014.
What have we learned last time? Q value Binding energy Semiempirical binding energy formula Stability.
Kazimierz What is the best way to synthesize the element Z=120 ? K. Siwek-Wilczyńska, J. Wilczyński, T. Cap.
Angular momentum population in fragmentation reactions Zsolt Podolyák University of Surrey.
One-qusiparticle excitations of the heavy and superheavy nuclei A. Parkhomenko and and A.Sobiczewski Institute for Nuclear Studies, ul. Hoża 69, Warsaw.
Accelerator technique FYSN 430 Fall Syllabus Task: determine all possible parameters for a new accelerator project Known: Scope of physics done.
Superheavy Element Studies Sub-task members: Paul GreenleesJyväskylä Rodi Herzberg, Peter Butler, RDPLiverpool Christophe TheisenCEA Saclay Fritz HessbergerGSI.
GSI Experiments on Synthesis and Nuclear Structure Investigations of Heaviest Nuclei F. P. Heßberger Gesellschaft für Schwerionenforschung mbH, D
Role of mass asymmetry in fusion of super-heavy nuclei
Ю.Ц.Оганесян Лаборатория ядерных реакций им. Г.Н. Флерова Объединенный институт ядерных исследований Пределы масс и острова стабильности сверхтяжелых ядер.
N. Saito The RISING stopped beam physics meeting Technical status of RISING at GSI N. Saito - GSI for the RISING collaboration Introduction Detector performance.
7-1 CHEM 312 Lecture 7: Fission Readings: Modern Nuclear Chemistry, Chapter 11; Nuclear and Radiochemistry, Chapter 3 General Overview of Fission Energetics.
Nuclear structure around 100 Sn Darek Seweryniak, ANL.
Kazimierz 2011 T. Cap, M. Kowal, K. Siwek-Wilczyńska, A. Sobiczewski, J. Wilczyński Predictions of the FBD model for the synthesis cross sections of Z.
abrasion ablation  σ f [cm 2 ] for projectile fragmentation + fission  luminosity [atoms cm -2 s -1 ]  70% transmission SIS – FRS  ε trans transmission.
106 th Session of the JINR Scientific Council September 24-25, 2009, Dubna Perspectives of JINR – ORNL Collaboration in the Studies of Superheavy Elements.
The excitation and decay of nuclear isomers Phil Walker CERN and University of Surrey, UK 3. Isomers at the limits of stability ● p decay ● n decay ● α.
II. Fusion and quasifission with the dinuclear system model Second lecture.
Known nuclides PROPERTIES OF FUNDAMENTAL PARTICLES Particle Symbol Charge Mass (x Coulombs) (x kg) Proton P Neutron N.
Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna Experimental activities and main results of the researches at FLNR (JINR) Theme: Synthesis.
Measurements of the (n,xn) reactions cross sections using new digital methods. Habib Karam Group GRACE.
LLNL-PRES This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
10-1 Fission General Overview of Fission The Probability of Fission §The Liquid Drop Model §Shell Corrections §Spontaneous Fission §Spontaneously Fissioning.
Accelerator Physics, JU, First Semester, (Saed Dababneh). 1 Electron pick-up. ~1/E What about fission fragments????? Bragg curve stochastic energy.
Radiochemistry Dr Nick Evans
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
Rare Isotope Spectroscopic INvestigation at GSI. abrasion ablation  σ f [cm 2 ] for projectile fragmentation + fission  luminosity [atoms cm -2 s -1.
Structure of Super-Heavy Elements Andreas Heinz A. W. Wright Nuclear Structure Laboratory Yale University ATLAS Workshop, August 8-9, 2009.
FAIR (Facility for Antiproton and Ion Research) (Darmstadt, Germany) low-energy cave MeV/u fragmentation/fission ~1GeV/u fragment separator 350m.
1 Synthesis of superheavy elements with Z = in hot fusion reactions Wang Nan College of Physics, SZU Collaborators: S G Zhou, J Q Li, E G Zhao,
C. M. Folden III Cyclotron Institute, Texas A&M University NN2012, San Antonio, Texas May 31, 2012.
Observation of new neutron-deficient multinucleon transfer reactions
Heavy ion nuclear physics in JINR /present and future/ Yuri Oganessian FLNR JINR 28-th of Nucl. Phys. PAC meeting June 19-20, 2008, JINR, Dubna.
March, 2006SERC Course1  Z>92 (Heaviest Element in Nature) and upto Z= achieved by n irradiation or p,  and d bombardment in Cyclotron ( )
Feng-Shou Zhang College of Nuclear Science and Technology Beijing Normal University, Beijing, China Collaborators: Long Zhu, Bao-An Bian, Hong-Yu Zhou,
2 nd SPES Workshop Probing the Island of Stability with SPES beams.
Lecture 4 1.The role of orientation angles of the colliding nuclei relative to the beam energy in fusion-fission and quasifission reactions. 2.The effect.
Lecture 3 1.The potential energy surface of dinuclear system and formation of mass distribution of reaction products. 2.Partial cross sections. 3. Angular.
Reinhard Kulessa1 Polish-German Meeting on the New International Accelerator Facility at Darmstadt Present Polish-German Collaborations at GSI.
Proton emission from deformed rare earth nuclei Robert Page.
Study of Heavy-ion Induced Fission for Heavy Element Synthesis
of very neutron deficient heavy nuclei
PHL424: α-decay Why α-decay occurs?
HEAVY ELEMENT RESEARCH AT THE FLNR (DUBNA)
the s process: messages from stellar He burning
Decay spectroscopy with LaBr3(Ce) detectors at RIKEN and GSI
Ch. 21 Nuclear Chemistry.
Synthesis of Elements Sophia Heinz
In-beam and isomer spectroscopy in the third island of inversion at EXOGAM+VAMOS E.Clément (GANIL)
采用热熔合方法合成超重核的理论研究 王楠 深圳大学 合作者: 赵恩广 (中科院 理论物理所) 周善贵 (中科院 理论物理所)
CHEM 312 Lecture 7: Fission Readings: Modern Nuclear Chemistry, Chapter 11; Nuclear and Radiochemistry, Chapter 3 General Overview of Fission Energetics.
Outside the nucleus, the beta decay {image} will not occur because the neutron and electron have more total mass than the proton. This process can occur.
Intermediate-mass-fragment Production in Spallation Reactions
Experiment SHIP: Fusion without “extrapush“
Size of Nuclei R = ro A1/3 T&R Figure 12.2.
Rare Isotope Spectroscopic INvestigation at GSI
PHL424: α-decay Why α-decay occurs?
New Transuranium Isotopes in Multinucleon Transfer Reactions
Lecture 4 ½ The end of the SEMF 9 Nov 2005, Lecture 4.
Production Cross-Sections of Radionuclides in Proton- and Heavy Ion-Induced Reactions Strahinja Lukić.
Investigation of 178Hf – K-Isomers
Catalin Borcea IFIN-HH INPC 2019, Glasgow, United Kingdom
Status report Experiment IS550 P-344:
Presentation transcript:

Study of SHE at the GSI – SHIP International School of Nuclear Physics, 30th Course Heavy-Ion Collisions from the Coulomb Barrier to the Quark-Gluon Plasma Study of SHE at the GSI – SHIP Sigurd Hofmann GSI Darmstadt and Goethe-University Frankfurt September 16-24, 2008, Erice, Sicily

SHE Calculated half-lives: 108 years – 1 ns trans-actinides spherical nuclei deformed trans-actinides actinides proton number stabile elements neutron number

Predictions of the macroscopic-microscopic model

Expected half-lives of SHE and research goals even- even Location of closed shells: Proton shell: 114, 120 or 126 / 114 – 126 ? Neutron shell: 172 or 184 ? Reaction mechanism: Cross-sections Excitation functions Cross bombardments Mass asymmetry Fusion and transfer Nuclear structure: Lifetimes Decay modes Isomers even- odd 6 3

The "UNIversal Linear ACcelerator" UNILAC Rc 1505; 2f18

Velocity separator SHIP Separation time: 1 – 2 μs Transmission: 20 – 50 % Background: 10 – 50 Hz Det. E. resolution: 18 – 25 keV Det. Pos. resolution: 150 μm Dead time: 3 – 25 μs Mastertitelformat bearbeiten

Detector system Time: F3 – F1 1 s Energy: Estop: Ebox: Position: Sistop,box – F1,2,3 4 s Sistop – Sibox 5 s Sistop,box – Ge1,2,3,4 5 s Dead time: 3 and 25 s Energy: Estop: Ebox: 0.2 – 16; 0.2 – 16 MeV 5.0 – 320; 2.5 – 160 MeV Eveto: 0.4 – 16 MeV Ge: 30 – 2000 keV 0.1 – 8.0 MeV Position: Stop x = 0 – 80 mm / 5 mm ytop,bottom = 0 – 35 mm / 0.2 mm Box: 28 Segments Fusions- Produkte

Energy versus time-of-flight plots, Δt (ER-sf) = 1000 s 252No E / MeV 206Pb 48Ca 48Ca + 206PbS => 254No* 238U 48Ca + 238U => 286112* –TOF / channel

Longest decay chain of 277112 Known nuclei 277112 CN 273110 11.45 MeV 253Fm 8.34 MeV 15.0 s yER = 17.9 mm 277112 y = 150 m (FWHM) 269108 11.08 MeV 110 s y = 35 mm 257No 8.52 MeV 4.7 s 265106 9.23 MeV 19.7 s 261104 4.60 MeV (escape) 7.4 s Known nuclei d = 300 m

First decay chain of element 112 Experiment, GSI-SHIP, 9. February 1996, 22:36 h Theory, P. Möller, 1995: Ground-state shell correction energy

Reaction mechanism Excitation functions 50Ti, 54Cr, 58Fe, 64Ni, 70Zn + 208Pb