Enteroviruses An Overview.

Slides:



Advertisements
Similar presentations
POLIOMYELITIS.
Advertisements

Polio Eradication Dr Marvin Hsiao Division of Medical Virology NHLS/UCT/Groote Schuur Hospital.
Picornaviruses Chapter 36. Properties Structure and composition 30 nm, icosahedral plus-strand RNA, kb RNA is polyadenylated Ten genes, eleven.
Enteroviruses An Overview.
Enterovirus.
Picornaviruses.
Picornaviruses.
Picornavirus Pico + RNA = Picorna.
Arthropod-borne Viruses
Arthropod-borne Viruses Arthropod-borne viruses (arboviruses) are viruses that can be transmitted to man by arthropod vectors. Arboviruses belong to three.
FECAL-BORNE HEPATITIS. ETIOLOGY Hepatitis A virus (HAV), Hepatovirus Picornavirus, enterovirus nm 1 serotype only, although there are 4 genotypes.
Poliomyelitis First described by Michael Underwood in 1789 First outbreak described in U.S. in ,000 paralytic cases reported in the U. S. in 1952.
Coxsackievirus Shandong university school of medicine Class 2 Grade 2002 clinical medicine for seven years.
Diarrhoeal Viruses An Overview. Viral Gastroenteritis It is thought that viruses are responsible for up to 3/4 of all infective diarrhoeas. Viral gastroenteritis.
(+) Stranded RNA Viruses III
Gastrointestinal Viruses. Viral Gastroenteritis It is thought that viruses are responsible for up to 3/4 of all infective diarrhoeas. Viral gastroenteritis.
Viruses of Diarrhoea Ziad Elnasser, MD, Ph.D. Viral Gastroenteritis  It is thought that viruses are responsible for up to 3/4 of all infective diarrhoeas.
Picornaviridae Assistant Professor & Consultant Virologist College of Medicine & KKUH By: Dr.Malak El-Hazmi.
Polio and Polio Vaccine
Viruses associated with gastrointestial tract infections Medical Virology Lecture 03/04 Youjun Feng Center for Infection & Immunity, Zhejiang University.
Picornaviruses.  Represent a very large virus family with respect to the number of members  One of the smallest in terms of virion size and genetic.
DR. MOHAMMED ARIF ASSOCIATE PROFESSOR CONSULTANT VIROLOGIST HEAD OF THE VIROLOGY UNIT Family: Picornaviridae ( Enteroviruses ).
Avian Influenza H5N1 Prepared by: Samia ALhabardi.
Poliomyelitis and Post Polio Syndrome Mazloumi MD Qaem,s Hospital.
Neuroviruses. Structure and biological properties of poliovirus, lyssavirus, encephalitis viruses.
ENTEROVIRUSES Family: Small, spherical, Icosahedral, Single stranded RNA.
EPIDEMIOLOGY&CONTROL OF POLIOMYELITIS BY DR. AWATIF ALAM.
Polio virus Faris Bakri. Introduction The cause of poliomyelitis Polios: gray Myelos: marrow or spinal cord Global eradication is anticipated in 21 st.
Adenovirus.
Epidemiology of Poliomyelitis Ashry Gad Mohamed MBchB, MPH, DrPH Prof. of Epidemiology Medical College, KSU.
Polio. Poliomyelitis, often called polio or infantile paralysis, is an acute viral infectious disease which is spread from person-to-person via the.
Toxoplasma gondii and toxoplasmosis Cheng Yanbin April 2005.
MUMPS VIRUS Genus Rubulavirus. PARAMYXOVIRIDAE Paramyxovirinae Genus respirovirus: Genus Rubulavirus Genus morbillivirus Pneumovirinae Genus Pneumovirus.
MEASLES (RUBEOLA) VIRUS Genus Morbillivirus. PARAMYXOVIRIDAE Paramyxovirinae Genus respirovirus: Genus Rubulavirus Genus morbillivirus Pneumovirinae Genus.
Family: Picornaviridae ( Enteroviruses ).
Infection and Disease Fungi Parasites Nosocomial infection Diagnosis of infectious disease.
Picornaviridae. Picornaviridae: They are small naked icosahedral, with ss RNA +ve polarity single molecule genome, size of virion ~28-30 nm. Classification.
Poliomyelitis. Instructional Objectives: At the end of the lecture the student would be able to: 1-Demonstrate the main clinical characteristics of poliomyelitis.
Quick Insights on Some Viral Issues Dr. Haya Al-Tawalah Clinical Virologist.
Poliomyelitis. Instructional Objectives: At the end of the lecture the student would be able to: 1-Demonstrate the main clinical characteristics of poliomyelitis.
Polio and Polio Vaccine Epidemiology and Prevention of Vaccine- Preventable Diseases National Immunization Program Centers for Disease Control and Prevention.
POLIOMYELITIS & PRION DISEASE
Enteroviruses Dr. Mohammad Shakeeb, MD Specialist in clinical pathology/Microbiology and immunology.
Introduction Reoviruses are medium-sized viruses with a double-stranded, segmented RNA genome. The family includes human rotaviruses, the most important.
CANINE HERPESVIRUS INFECTION
Hepatitis Viruses.
Arthropod-borne Viruses
Gastroenteritis Viruses (Dentistry)
VIRAL INFLUENZA.
Newcastle Disease.
RNA NON-ENVELOPED Picornaviruses.
Poliomyelitis Dr. Asif Rehman.
Medical Microbiology & Immunology Department NON-ENVELOPED DNA VIRUSES
Poliomyelitis It is one of the causes of acute flaccid paralysis syndrome causing paralysis of the muscles of the limbs caused by; either wild strain PV.
Respiratory Viruses Respiratory diseases occur most frequently in colder weather, especially in raining season, and in cases of overcrowding. Causes of.
Aseptic meningitis Dr. Ashraf Khasawneh.
Poliomyelitis It is one of the causes of acute flaccid paralysis syndrome causing paralysis of the muscles of the limbs caused by; either wild strain PV.
Anish Chaudhary Department of Microbiology
Third year medical students Faculty of medicine, Mutah University
Laboratory Diagnosis of Infectious Diseases
Dr .Ghazi F.Haji Cardiologist AL-Kindy Medical collage
AMINU M,1 AHMAD A A1 and OGUNRINDE G O2
Viral pathogens and Vaccination
Picornaviruses.
Diarrhoeal Viruses An Overview.
ASPEK VIRUS RUBELLA.
HEPATITIS C BY MBBSPPT.COM
Rubella Dr hab.n. med. Ewa Majda - Stanisławska
RUBELLA Dr.T.V.Rao MD.
Polio.
Presentation transcript:

Enteroviruses An Overview

Enteroviruses Enteroviruses are a genus of the picornavirus family which replicate mainly in the gut. Single stranded naked RNA virus with icosahedral symmetry Unlike rhinoviruses, they are stable in acid pH Capsid has 60 copies each of 4 proteins, VP1, VP2, VP3 and VP4 arranged with icosahedral symmetry around a positive sense genome. At least 71 serotypes are known: divided into 5 groups Polioviruses Coxsackie A viruses Coxsackie B viruses Echoviruses Enteroviruses (more recently, new enteroviruses subtype have been allocated sequential numbers (68-71))

Enterovirus Particles Courtesy of Linda M. Stannard, University of Cape Town, S.A.h

History Poliovirus - first identified in 1909 by inoculation of specimens into monkeys. The virus was first grown in cell culture in 1949 which became the basis for vaccines. Coxsackieviruses - In 1948, a new group of agents were identified by inoculation into newborn mice from two children with paralytic disease. These agents were named coxsackieviruses after the town in New York State. Coxsackieviruses A and B were identified on the basis of the histopathological changes they produced in Newborn mice and their capacity to grow in cell cultures. Echoviruses - were later identified which produced cytopathic changes in cell culture and was nonpathogenic for newborn mice and subhuman primates. More recently, new enterovirus types have been allocated sequential numbers (68 - 71).

Properties of Enteroviruses

Poliovirus 3 serotypes of poliovirus (1, 2, and3) but no common antigen. Have identical physical properties but only share 36-52% nucleotide homology. Humans are the only susceptible hosts. Polioviruses are distributed globally. Before the availability of immunization, almost 100% of the population in developing countries before the age of 5. The availability of immunization and the poliovirus eradication campaign has eradicated poliovirus in most regions of the world except in the Indian Subcontinent and Africa. Poliovirus was originally targeted for eradication by 2000. As of Poliovirus remain endemic in only 3 countries: Afghanistan, Pakistan and Nigeria

Pathogenesis The incubation period is usually 7 - 14 days. Following ingestion, the virus multiplies in the oropharyngeal and intestinal mucosa. The lymphatic system, in particular the tonsils and the Peyer's patches of the ileum are invaded and the virus enters the blood resulting in a transient viraemia. In a minority of cases,the virus may involve the CNS following dissemination.

Clinical Manifestations There are 3 possible outcomes of infection: Subclinical infection (90 - 95%) - inapparent subclinical infection account for the vast majority of poliovirus infections. Abortive infection (4 - 8%) - a minor influenza-like illness occurs, recovery occurs within a few days and the diagnosis can only be made by the laboratory. The minor illness may be accompanied by aseptic meningitis Major illness (1 - 2%) - the major illness may present 2 - 3 days following the minor illness or without any preceding minor illness. Signs of aseptic meningitis are common. Involvement of the anterior horn cells lead to flaccid paralysis. Involvement of the medulla may lead to respiratory paralysis and death.

Laboratory Diagnosis Virus Isolation Poliovirus can be readily isolated from throat swabs, faeces, and rectal swabs. It is rarely isolated from the CSF Can be readily grown and identified in cell culture Requires molecular techniques to differentiate between the wild type and the vaccine type. RT-PCR - a rapid diagnosis of poliovirus infection may be made by the use of RT-PCR. Serology - Very rarely used for diagnosis since cell culture is efficient. Occasionally used for immune status screening for immunocompromised individuals.

Prevention (1) No specific antiviral therapy is available. However the disease may be prevented through vaccination. There are two vaccines available. Intramuscular Poliovirus Vaccine (IPV) consists of formalin inactivated virus of all 3 poliovirus serotypes. Produces serum antibodies only: does not induce local immunity and thus will not prevent local infection of the gut. However, it will prevent paralytic poliomyelitis since viraemia is essential for the pathogenesis of the disease. Oral Poliovirus Vaccine (OPV) Consists of live attenuated virus of all 3 serotypes. Produces local immunity through the induction of an IgA response as well as systemic immunity. Rarely causes paralytic poliomyelitis, around 1 in 3 million doses.

Prevention (2) Most countries use OPV because of its ability to induce local immunity and also it is much cheaper to produce than IPV. The normal response rate to OPV is close to 100%. OPV is used for the WHO poliovirus eradication campaign. Because of the slight risk of paralytic poliomyelitis, some Scandinavian countries have reverted to using IPV. Because of the lack of local immunity, small community outbreaks of poliovirus infections have been reported. Poliovirus was targeted for eradication by the WHO by the end of year 2000 (now 2005). To this end, an extensive monitoring network had been set up. Poliovirus has been eradicated from most regions of the world except the Indian subcontinent and sub-Saharan Africa. It is possible that the WHO target may be achieved.

Coxsackieviruses Coxsackieviruses are distinguished from other enteroviruses by their pathogenicity for suckling rather than adult mice. They are divided into 2 groups on the basis of the lesions observed in suckling mice. Group A viruses produce a diffuse myositis with acute inflammation and necrosis of fibers of voluntary muscles. Group B viruses produce focal areas of degeneration in the brain, necrosis in the skeletal muscles, and inflammatory changes in the dorsal fat pads, the pancreas and occasionally the myocardium. Each of the 23 group A and 6 group B coxsackieviruses have a type specific antigen. In addition, all from group B and one from group A (A9) share a group Ag. Cross-reactivities have also been demonstrated between several group A viruses but no common group antigen has been found.

Echoviruses The first echoviruses were accidentally discovered in human faeces, unassociated with human disease during epidemiological studies of polioviruses. The viruses were named echoviruses (enteric, cytopathic, human, orphan viruses). These viruses were produced CPE in cell cultures, but did not induce detectable pathological lesions in suckling mice. Altogether, There are 32 echoviruses (types 1-34; echovirus 10 and 28 were found to be other viruses and thus the numbers are unused) There is no group echovirus Ag but heterotypic cross-reactions occur between a few pairs.

New Enteroviruses Newly identified picornaviruses that are not polioviruses are no longer classified separated into the species coxsackie and echovirus because of the ambiguities presented by overlapping host range variations. 4 new enteroviruses have been identified (68 - 72). Enterovirus 70 is the causative agent epidemics of acute haemorrhagic conjunctivitis that swept through Africa, Asia, India and Europe from 1969 to 1974. The virus is occasionally neurovirulent. Enterovirus 71 appears to be highly pathogenic and has been associated with epidemics of a variety of acute diseases, including aseptic meningitis, encephalitis, paralytic poliomyelitis-like disease and hand-foot-mouth disease. Enterovirus 72 was originally assigned to hepatitis A virus, but it had now been assigned to a new family called heptoviruses.

Diseases associated with Enteroviruses

Disease Associations (1) Paralytic Disease - most commonly associated with polioviruses but other enteroviruses may also be responsible, notably enterovirus 71 Meningitis - caused by all groups of enteroviruses, most commonly seen in children under 5 years of age. Encephalitis - focal or generalized encephalitis may accompany meningitis. Most patients recover completely with no neurological deficit. Undifferentiated febrile illness - may be seen with all groups of enteroviruses. Hand foot mouth disease - usually caused by group A coxsackieviruses although group B coxsackieviruses and other enteroviruses have been caused outbreaks. Herpangina - caused by group A coxsackieviruses. Epidemic Pleurodynia (Bornholm disease) - normally caused by group B coxsackieviruses.

Disease Associations (2) Myocarditis - group B coxsackieviruses are the major cause of myocarditis, although it may be caused by other enteroviruses. It may present in neonates as part of neonatal infection and is often fatal. In adults, the disease is rarely fatal. Respiratory Infections - several enteroviruses are associated with the common cold. Rubelliform rashes - a rash disease resembling rubella may be seen with several coxsackie A, B, and echoviruses. Neonatal Infection - some coxsackie B viruses and echoviruses may cause infection in newborn infants. The virus is usually transmitted perinatally during the birth process and symptoms vary from a mild febrile illness to a severe fulminating multisystem disease and death. Conjunctivitis - associated with several types of enteroviruses, notably Coxsackie A24 and Enterovirus 70 (haemorrhagic conjunctivitis) Pancreatitis/Diabetes - associated with Coxsackie B virus infection. The extent of the role of the virus in diabetes is unknown.

Laboratory Diagnosis Virus Isolation Mainstay of diagnosis of enterovirus infection Coxsackie B and Echoviruses can be readily grown in cell culture from throat swabs, faeces, and rectal swabs, and also from the CSF Coxsackie A viruses cannot be easily isolated in cell culture. RT-PCR - PCR assays are becoming increasingly used for the detection and identification of enteroviruses. They are especially useful in the case of Coxsackie A viruses and also for the diagnosis of menigitis. Serology Very rarely used for diagnosis since cell culture is efficient. Neutralization tests or EIAs are used but are very cumbersome and thus not offered by most diagnostic laboratories

Cytopathic Effect (Virology Laboratory, New-Yale Haven Hospital)

Management and Prevention There is no specific antiviral therapy available against enteroviruses other than polio. Some authorities use IVIG in the treatment of neonatal infections or severe infections in immunocompromised individuals. However, the efficacy is uncertain. HNIG have been to prevent outbreaks of neonatal infection with good results. There is no vaccine available mainly because of the multiplicity of serotypes. There is little interest in developing a vaccine except against enterovirus 71 and coxsackie B viruses.