Low-Mass Drift Chambers for HADES

Slides:



Advertisements
Similar presentations
1 Pion beam tracker for HADES Jerzy Pietraszko CBM Collaboration Meeting, March 9-13, 2009, GSI, Darmstadt.
Advertisements

Time Projection Chamber
Ultra Peripheral Collisions at RHIC Coherent Coupling Coherent Coupling to both nuclei: photon~Z 2, Pomeron~A 4/3 Small transverse momentum p t ~ 2h 
MDC-II LVL-1 Trigger Khaled Teilab for the MDC Trigger Team.
Dielectrons from HADES to CBM Bratislava (SAS, PI), Catania (INFN - LNS), Cracow (Univ.), Darmstadt,(GSI), Dresden (FZR), Dubna (JINR), Frankfurt (Univ.),Giessen.
Muon Tracker Overview The PHENIX Muon Arms detect vector mesons decaying into muon pairs, allow the study of the Drell-Yan process, and provide muon detection.
Electron detectors and spectrometers 1) Gas detectors 2) Channeltrons 3) Semiconductor detectors 4) Electrostatic spectrometers 5) Magnetic spectrometers.
The Time-of-Flight system of the PAMELA experiment: in-flight performances. Rita Carbone INFN and University of Napoli RICAP ’07, Rome,
Drift Chambers Drift Chambers are MWPCs where the time it takes for the ions to reach the sense wire is recorded. This time info gives position info:
STS Simulations Anna Kotynia 15 th CBM Collaboration Meeting April , 2010, GSI 1.
RICH PylosR. Gernhäuser (TU-München) The HADES RICH High Acceptance Di-Electron Spectrometer The HADES Spectrometer Special requirements RICH setup.
1 High Acceptance Di-Electron Spectrometer The activity of JINR for HADES project is performed in frame of theme /2005 with a first priority.
Straw spatial resolution (beam test 2007 and 2008) A.Zinchenko, S.Shkarovskiy.
NanoPHYS’12 – December 17-19, 2012 K. Nakano, S. Miyasaka, K. Nagai and S. Obata (Department of Physics, Tokyo Institute of Technology) Drift Chambers.
Measuring the Position Resolution of a COMPASS Drift Chamber Prototype Rojae Wright 1, Ihnjea Choi 2, Caroline Riedl 2, Matthias Grosse Perdekamp 2 (1)
Yosuke Watanabe….. University of Tokyo, RIKEN A, KEK C, Development of a GEM tracker for E16 J-PARC 1 Thanks to ???????????
RESEARCH and DEVELOPMENT for CBM (at LHE JINR) Yu.V. Zanevsky Laboratory of High Energies JINR, Dubna - NEW INFRASTRUCTURE - FAST GAS DETECTORS - DIPOLE.
1 A.Andronic 1, H.Appelshäuser 1, V.Babkin 2, P.Braun-Munzinger 1, S.Chernenko 2, D.Emschernmann 3, C.Garabatos 1, V.Golovatyuk 2, J.Hehner 1, M.Hoppe.
April 22nd, 2004Nigel Lockyer / Young-Kee Kim1 Drift Chambers AMY experiment at e + e - TRISTAN collider CDF experiment B = 3 T B = 1.4 T.
A Low-mass Tracking System for the new Di-Electron GSI GSI Darmstadt, LHE/JINR Dubna, IKF Frankfurt, MEPhI Moscow, IPN Orsay, FZ Rossendorf.
Hadron production in C+C at 1 and 2 A GeV analysis of data from experiments NOV02 and AUG04 for high resolution tracking (Runge-Kutta tracks) Pavel Tlustý,
Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,
Future Possibilities for Measuring Low Mass Lepton Pairs in Christine Aidala for the Collaboration Quark Matter 2002, Nantes.
Muon detection in NA60  Experiment setup and operation principle  Coping with background R.Shahoyan, IST (Lisbon)
PERFORMANCE OF THE PHENIX SOUTH MUON ARM Kenneth F. Read Oak Ridge National Lab & University of Tennessee for the PHENIX Collaboration Quark Matter 2002.
2002 LHC days in Split Sandra Horvat 08 – 12 October, Ruđer Bošković Institute, Zagreb Max-Planck-Institute for Physics, Munich Potential is here...
Beam Test of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System Vallary Bhopatkar M. Hohlmann, M. Phipps, J. Twigger, A.
A Highly Selective Dilepton Trigger System Based on Ring Recognition Alberica Toia II Physikalisches Institut Justus-Liebig-Universität Gießen, Germany.
FEE for Muon System (Range System) Status & Plans G.Alexeev on behalf of Dubna group Turin, 16 June, 2009.
HADRON 2009, FloridaAnar Rustamov, GSI Darmstadt, Germany 1 Inclusive meson production at 3.5 GeV pp collisions with the HADES spectrometer Anar Rustamov.
The CDF Upgrade - Incandela -CERN - January 26, 2001 slide 1 96 wire planes –(8 superlayers) –50% are 3 o stereo –Uniform drift (0.88 cm cell) –30,240.
1 More information: Status Report of HADES Project (JINR Participation) Theme: /2005 Leaders:
Precision Drift Tube Detectors for High Counting Rates O. Kortner, H. Kroha, F. Legger, R. Richter Max-Planck-Institut für Physik, Munich, Germany A. Engl,
1 straw tube signal simulation A. Rotondi PANDA meeting, Stockolm 15 June 2010.
Focal plane detector discussion Kwangbok Lee Low Energy Nuclear Science team Rare Isotope Science Project Institute for Basic Science July 11,
for the HADES Collaboration
Status of BESIII and upgrade of BESIII
FEE for TPC MPD__NICA JINR
Performance of the HADES-TOF RPC wall in a Au-Au beam
Beam detectors performance during the Au+Au runs in HADES
Activities on straw tube simulation
PANDA Muon Group Meeting, Protvino 7 June 2011 G
S.Movchan Straw prototype beam test into the NA48 infrastructure
Study of Hypernuclei with Heavy Ion Beams (HypHI) at GSI Shizu Minami GSI, Germany on behalf of HypHI collaboration Introduction Phase 0 experiment R.
First results from prototype measurements
Entrance Muon Counter (EMC)
Collaboration: 18 Inst members Motivation Detector description
Exclusive w/h production in pp collisions at Ekin=3.5 GeV with HADES
Application of VATAGP7 ASICs in the Silicon detectors for the central tracker (forward part) S. Khabarov, A. Makankin, N. Zamiatin, ,
Tracking results from Au+Au test Beam
CMS muon detectors and muon system performance
Event Reconstruction and Data Analysis in R3BRoot Framework
Drift Chambers for CLAS12 -Mac Mestayer
PADI for straw tube readout and diamonds for MIPs and for high precision tracking beam test – Jülich, Feb Jerzy Pietraszko, Michael Träger, Mircea.
Simulation results for the upgraded RICH detector in the HADES experiment. Semen Lebedev1,3, Jürgen Friese2, Claudia Höhne1, Tobias Kunz2, Jochen Markert4.
HARPO, a Micromegas+GEM TPC for gamma polarimetry above 1 MeV
First results from technical run with deuteron beam
Participation in the HADES experiment
Preparation of the CLAS12 First Experiment Status and Time-Line
ATLAS Silicon Tracker commissioning
1. Introduction Secondary Heavy charged particle (fragment) production
Performance of MDC during New Data Taking
Niels Tuning (Outer Tracker Group LHCb)
GEANT Simulations and Track Reconstruction
Pre-installation Tests of the LHCb Muon Chambers
Bi-Weekly Meeting 2004/09/08 Susumu Oda
11th Pisa meeting on advanced detectors
High-pT Identified Charged Hadrons in √sNN = 200 GeV Au+Au Collisions
Resistive Plate Chambers performance with Cosmic Rays
How can we study the magnetic distortion effect?
Presentation transcript:

Low-Mass Drift Chambers for HADES C. Müntz, GSI Darmstadt HADES: High Acceptance Di-Electron Spectrometer The major physics goal: Properties of hadrons in hot and dense nuclear matter The experimental approach: Spectroscopy of rare vector mesons produced in heavy ion collisions via their decay in penetrating electron-positron pairs Outline: Design constraints for the HADES tracking system Choice of materials The HADES planar Drift chambers In-beam performance SAMBA 2002, Trieste C. Müntz, GSI Darmstadt

Present HADES Setup @ GSI SAMBA 2002, Trieste C. Müntz, GSI Darmstadt

HADES: The Heavy Ion Case Simulation: Central 1 AGeV Au+Au reaction, all (200) charged particles per event: Hadron-blind RICH: Electron pair from w decay: projected in-spill rates [Hz]: 108 projectiles, 106 reactions (1% target), 105 central reactions rare r,w vector mesons: branching & production cross section: …0.5 Hz Electrons from conversion and p0 decay: combinatorial background SAMBA 2002, Trieste C. Müntz, GSI Darmstadt

Hades Gross Properties Electron ID: RICH META: Shower / ToF  Efficient & selective multi-stage trigger Momentum measurement: Magnet, 6 coils Supercond. toroid (0.7T) 2p in f, 18o < J < 85o Tracking system High acceptance ( 40% for pairs) High invariant mass resolution (ca. 1% in the r mass region) This translates in: Maximum efficiency for MIPs High resolution tracking (intrinsic spatial cell resolution < 140 mm) Use of low-mass materials to minimize multiple scattering (x/X0  5 10-4) SAMBA 2002, Trieste C. Müntz, GSI Darmstadt

Low-Mass Materials Drift chamber gas: Balancing between Low multiple scattering Spatial resolution (dE/dx, vD uniformity) Stability (gain, plateau) Aging Lorentz angle (B < 0.05 T) Physics-driven choice: Helium: fill gas, avalanche Isobutane: primary ionization, quencher He : i-C4H10 [60:40] gain = 5…10 105 vD = 3…4.3 cm/ms Wires: Balancing between Low mass occupancy Stability (self-sustained currents / Malter) Tension loss (creeping, load on frames) Our choice: Sense wires: 20 / 30 mm Au/W*) Cathode, Field wires: 80 / 100 mm annealed Aluminum **) (I-III: bare Al, IV: gold-plated Al) x/X0  5 10-4 Other low-mass DCs: CLEO, KLOE, FINUDA, BELLE, CLAS, BaBar *) LUMA **) California fine wire SAMBA 2002, Trieste C. Müntz, GSI Darmstadt

Long-Term Stability: Aging C.Garabatos Accelerated aging with X-rays (55Fe) 2 prototypes Io = 6 nA/cm Expected charge dose in HADES: 10 mC/year/cm No significant gain degradation (<5%) within an equivalent of 2 years running SAMBA 2002, Trieste C. Müntz, GSI Darmstadt

Long-Term Stability: Creep of Al Wires 1800 170 cN Tension (cN) Number of days DF = 10% Bare Aluminum wires: (annealed) systematic wire tension loss measurements HADES MDC: 80 (100) mm Low pre-tension 80 (100) cN J.Hehner/H.Daues DL GSI Measured tension loss: 10% in 5 years SAMBA 2002, Trieste C. Müntz, GSI Darmstadt

MDC Cross Properties Gross properties: Active areas: 0.35 – 3.2 m2 Gas vol.: 15-260 l, flow 10-20 V/day Cell Size: 5x5 – 14x10 mm2 6 Stereo angles: +40, -20, +0,-0,+20, -40 deg., kick angle optimized, cathode wires at 90 deg. Max. occupancy: 30% (8% average), 0.6 hits per cm IPN Orsay FZR LHE Dubna GSI Materials: Sense wire: 20/30mm Au/W Cathode, Field wires: 80/100 mm Al Windows: 12 mm Al-Mylar Narrow Aluminum frames, 0.5 t load Operating gas: He-iC4H10 [60-40] Publications: Optimisation of low-mass drift chambers for HADES, Nucl. Instr. Methods A 412 (1998) 38 Development of low-mass drift chambers for the HADES spectrometer, Nucl. Instr. Methods A 477 (2002) 387 SAMBA 2002, Trieste C. Müntz, GSI Darmstadt

Cell Properties MAGBOLZ / Garfield simulations Drift velocity topology (MDC I): X [mm] VD [mm/ns] Y [mm] Operating voltages: Cathode/field: -1.75 … -2.3 kV Sense: ground MAGBOLZ / Garfield simulations SAMBA 2002, Trieste C. Müntz, GSI Darmstadt

Comparison to Simulations Drift time spectra: x-t correlation: Good agreement!  Improvement of calibration & tracking algorithms Intrinsic spatial resolution: (proton beam, MDC prototype, Silicon strip tracker) SAMBA 2002, Trieste C. Müntz, GSI Darmstadt

Present MDC Setup GSI plane I: ORSAY plane IV: Installed (5/2002): 17 out of 24 MDCs In-beam experiences: Several commissioning and first production runs, C+C, Cr+Al, 1-2 AGeV incident energy, Moderate intensities: several 106 projectiles/spill SAMBA 2002, Trieste C. Müntz, GSI Darmstadt

Front-End Electronics Motherboard TDC FPC Daughter Boards ASD8 LVL1 Bus connector FPC- connector Analog Daughter Boards: Differential amplifier & discriminator (ASD8 chip) 8 channels, 1 fC intr. noise, 30 mW / channel, adjustable threshold (Straw Tubes, M.Newcomer, IEEE Trans. on Nucl. Sc. 40 (1993)) Signals from Sense wire: td Dt TDC Features: semi-customized ASIC 8 ch., 0.5 ps/ch, common-stop, 1 ms full range Multi-hit cap. (leading/trailing) Spike suppression (Dt < 20ns) Zero suppression Calibration Mode (…mixed trigger) Dt = “time above threshold” SAMBA 2002, Trieste C. Müntz, GSI Darmstadt

Time Above Threshold *) vs. drift time: Gas system: He : Isobutane = [60:40] Re-circulating gas system, with purification (Bosteels / CERN) 500 l/h, 10% fresh gas (17 modules) Monitoring: O2, @ input/output Gas quality monitors (amplitude, drift velocity) Time above threshold: Lower  higher O2 contamination high Lower O2 contamination *) efficient offline noise suppression! SAMBA 2002, Trieste C. Müntz, GSI Darmstadt

In-Beam Performance Hit pattern (central 1.8 AGeV C+C): Chamber Number Drift Velocity (mm/ns) Hit pattern (central 1.8 AGeV C+C): 6 sectors, 17 chambers Time Resolution (ns) Chamber Number SAMBA 2002, Trieste C. Müntz, GSI Darmstadt

In-Beam Performance Layer efficiencies > 98% Drift time residuals: Self correlation: Orsay FZR Dubna GSI Chamber Number Spatial Resolution (microns) “Tracking” with two chambers: Target position along beam axis target veto start foils Intrinsic spatial resolution 80 - 130 mm Layer efficiencies > 98% (systematic studies in progress, cosmic runs) SAMBA 2002, Trieste C. Müntz, GSI Darmstadt

Summary HADES: High-resolution spectroscopy of “low-momentum” electrons and positrons Low-mass planar drift chambers: He / Aluminum Customized read out electronics Gradual completion: 17 out of 24 chambers in operation In-Beam performance according to design values GSI Darmstadt LHE Dubna FZ Rossendorf IPN ORSAY SAMBA 2002, Trieste C. Müntz, GSI Darmstadt