Dizajniranje istraživanja u biomedicinskim znanostima

Slides:



Advertisements
Similar presentations
Introduction Simple Random Sampling Stratified Random Sampling
Advertisements

Formalizing the Concepts: Simple Random Sampling.
Sampling Distributions & Point Estimation. Questions What is a sampling distribution? What is the standard error? What is the principle of maximum likelihood?
Introduction to basic concepts and methods of modern stereology Goran Šimić, CIBR, 21th Apr 2006.
Chapter 1: Introduction to Statistics
STA Lecture 161 STA 291 Lecture 16 Normal distributions: ( mean and SD ) use table or web page. The sampling distribution of and are both (approximately)
Chap 20-1 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chapter 20 Sampling: Additional Topics in Sampling Statistics for Business.
Estimation Bias, Standard Error and Sampling Distribution Estimation Bias, Standard Error and Sampling Distribution Topic 9.
Understanding the Variability of Your Data: Dependent Variable Two "Sources" of Variability in DV (Response Variable) –Independent (Predictor/Explanatory)
© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
Sampling Design and Analysis MTH 494 Ossam Chohan Assistant Professor CIIT Abbottabad.
Sampling Sources: -EPIET Introductory course, Thomas Grein, Denis Coulombier, Philippe Sudre, Mike Catchpole -IDEA Brigitte Helynck, Philippe Malfait,
KNR 445 Statistics t-tests Slide 1 Introduction to Hypothesis Testing The z-test.
Sampling Methods, Sample Size, and Study Power
Accuracy, Reliability, and Validity of Freesurfer Measurements David H. Salat
Sampling Design and Analysis MTH 494 LECTURE-11 Ossam Chohan Assistant Professor CIIT Abbottabad.
WELCOME TO BIOSTATISTICS! WELCOME TO BIOSTATISTICS! Course content.
ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
CHAPTER 6: SAMPLING, SAMPLING DISTRIBUTIONS, AND ESTIMATION Leon-Guerrero and Frankfort-Nachmias, Essentials of Statistics for a Diverse Society.
26. Classification Accuracy Assessment
And distribution of sample means
Confidence Intervals for Proportions
Dr. Unnikrishnan P.C. Professor, EEE
Qualitative vs. Quantitative
Statistical Core Didactic
Inference and Tests of Hypotheses
Sampling Population: The overall group to which the research findings are intended to apply Sampling frame: A list that contains every “element” or.
Introduction, class rules, error analysis Julia Velkovska
Understanding Results
Hypothesis Testing and Confidence Intervals (Part 1): Using the Standard Normal Lecture 8 Justin Kern October 10 and 12, 2017.
Graduate School of Business Leadership
Confidence Intervals for Proportions
Statistical Data Analysis
Statistics 200 Objectives:
SAMPLING (Zikmund, Chapter 12.
4 Sampling.
statistics Specific number
Compression Plus Nonsteroidal Antiinflammatory Drugs, Aspiration, and Aspiration With Steroid Injection for Nonseptic Olecranon Bursitis ; RCT Joon Yub.
Petlje FOR - NEXT.
CHAPTER 29: Multiple Regression*
2. Stratified Random Sampling.
Basic Statistical Terms
Variables and Measurement (2.1)
Review: What influences confidence intervals?
Element form Milena Kostadinović.
Random sampling Carlo Azzarri IFPRI Datathon APSU, Dhaka
Daniela Stan Raicu School of CTI, DePaul University
statistics Specific number
Daniela Stan Raicu School of CTI, DePaul University
Strukture podataka i algoritmi 5. VRIJEME IZVRŠAVANJA ALGORITMA
Analiza varijance prof. dr. sc. Nikola Šakić.
Kratkotrajne veze žena i muškaraca
Sampling.
Hypothesis Testing A hypothesis is a claim or statement about the value of either a single population parameter or about the values of several population.
SAMPLING (Zikmund, Chapter 12).
Statistical Data Analysis
Product moment correlation
1. Homework #2 (not on posted slides) 2. Inferential Statistics 3
15.1 The Role of Statistics in the Research Process
Lecture 1: Descriptive Statistics and Exploratory
Confidence Intervals for Proportions
Lecture # 2 MATHEMATICAL STATISTICS
Statistical Thinking and Applications
Sampling and estimation
DESIGN OF EXPERIMENTS by R. C. Baker
Confidence Intervals for Proportions
Objectives 6.1 Estimating with confidence Statistical confidence
Survey Networks Theory, Design and Testing
Objectives 6.1 Estimating with confidence Statistical confidence
CS 594: Empirical Methods in HCC Experimental Research in HCI (Part 1)
Presentation transcript:

Dizajniranje istraživanja u biomedicinskim znanostima Goran Šimić 4. svibnja 2017. 15.30 – 19.00 h

1. Zašto pokusi zahtijevaju planiranje? Neovisnost podataka: unaprijed osigurati da svaki od izabranih ispitanika ni na koji način ne bude povezan s drugima u uzorku Kako bi stres i patnja životinja bili manji: unaprijed osigurati najmanji mogući broj životinja, ali još uvijek moramo biti sigurni da će pokus biti dovoljno velik kako bi se dobili smisleni rezultati Dobro dizajnirani pokusi minimaliziraju učinak slučajnih varijacija (nasumičnih kolebanja/odstupanja) Ruxton GD, Colegrave N. Experimental Design for the Life Sciences, Oxford University Press, New York, 2011

2. Pitanje – hipoteza - pretpostavka Relevantnost rješavanja važnih pitanja (za institucije i agencije koja financiraju istraživanja) Ruxton GD, Colegrave N. Experimental Design for the Life Sciences, Oxford University Press, New York, 2011

2. Pitanje – hipoteza - pretpostavka Temeljno je pravilo planiranja istraživanja nužnost testiranja barem jedne jasne hipoteze Nul-hipoteza (jesu li promatrani podatci slučajni) i alternativna hipoteza (jednostrana, dvostrana) Hoće li istraživanje biti vrijedno (korisno) čak i ako se potvrdi nul-hipoteza? Ruxton GD, Colegrave N. Experimental Design for the Life Sciences, Oxford University Press, New York, 2011

2. Pitanje – hipoteza - pretpostavka Hipoteza je dobra ako na temelju nje možemo postaviti provjerljive pretpostavke Pogrešno je mišljenje da su zanimljivi samo oni eksperimenti čiji rezultati pokazuju snažnu povezanost Ruxton GD, Colegrave N. Experimental Design for the Life Sciences, Oxford University Press, New York, 2011

2. Pilot istraživanje Pilot istraživanje treba provesti prije prikupljanja svih podataka na manjem broju ispitanika / uzoraka Pilot istraživanje je korisno jer će poslužiti za provjeru odabira statističkog testa kao i izračunavanje njegove snage Osim ako to nije moguće izbjeći, nije dobro pouzdati se u tuđe podatke, čak i ako potječu od velikih autoriteta Ruxton GD, Colegrave N. Experimental Design for the Life Sciences, Oxford University Press, New York, 2011

2. Provjera hipoteze Korelacijskim istraživanjem (mjernim eksperimentom ili opažajnim istraživanjem) - sustav se ne mijenja - uobičajeno su jednostavnija pa znače „manje posla” - manje su rizična s obzirom na konačni rezultat - 3 važna problema: „korelacija nije kauzacija”, tzv. „treća varijabla” i reverzna uzročnost Eksperimentalnom manipulacijom – sustav se mijenja, pa je i veća vjerojatnost neželjenih učinaka; takva istraživanja najčešće nisu moguća iz praktičnih ili etičkih razloga Ruxton GD, Colegrave N. Experimental Design for the Life Sciences, Oxford University Press, New York, 2011

2. „Treća varijabla” i reverzna uzročnost U gotovo svakom korelacijskom istraživanju postoji potencijalna „treća varijabla” koju nismo izmjerili, a koja može biti uzrok povezanosti koju primjećujemo Pouzdanost podataka može se stoga donekle povećati mjerenjem nekih najvjerojatnijih „trećih varijabli”, ali JEDINI način koji osigurava uklanjanje problema „treće varijable” jest izvođenje eksperimentalne manipulacije, koja također zaobilazi i problem reverzne uzročnosti (budući da tijekom pokusa manipuliramo eksperimentalnom varijablom) Ruxton GD, Colegrave N. Experimental Design for the Life Sciences, Oxford University Press, New York, 2011

Poopćavanje istraživanja (generaliziranje) Najbolje je kada istraživanje obuhvaća dokaze i iz in vivo i iz in vitro izvora (npr. ERC preporuke) In vitro istraživanja su konkretnija na uzročno-posljedičnoj razini, a mogućnosti generalizacije obično nas usmjeravaju prema in vivo istraživanjima Dobar dizajn istraživanja obuhvaća mogućnost prikupljanja što je moguće veće količine informacija Ruxton GD, Colegrave N. Experimental Design for the Life Sciences, Oxford University Press, New York, 2011

Replikati = pokusne jedinke/jedinice Replikacijom rješavamo interindividualne varijacije koje su prisutne zbog tzv. slučajnih razlika: Čim imamo više mjerenja (replika), biti će veći izgledi da je razlika između pokusnih skupina nastala zbog učinka čimbenika koji mjerimo (a ne zbog slučajnosti) Pseudoreplikati (replike mjerenja nisu neovisne jedne od drugih) Ruxton GD, Colegrave N. Experimental Design for the Life Sciences, Oxford University Press, New York, 2011

Pseudoreplikati Najčešći uzroci: Zajednička nastamba Zajednički okoliš Srodnost (blisko srodne vrste su sličnije jedne drugima jer više dijele evolucijsku povijest) Najbolji način izbjegavanja izvora pseudoreplikacije: RANDOMIZACIJA – slučajan (nasumičan) probir Ruxton GD, Colegrave N. Experimental Design for the Life Sciences, Oxford University Press, New York, 2011

Vrste mjernih ljestvica Nominalne (kategorije bi trebale biti međusobno isključive: vrsta, spol, itd. Ordinarne (hijerarhijske nominalne: jako loš, loš, dobar, jako dobar, izvrstan) Intervalne (ordinarne koje se mogu precizno odrediti) Omjerne (intervalne kod kojih je dijeljenje i množenje dviju jedinica na ljestvici smisleno, npr. masa, dužina (kontinuirane) ili npr. broj snesenih jaja, broj sekundarnih infekcija (diskretne) Statistička snaga

Population and sample “The sample looks like the population”: Always keep in mind the distinction between population and sample Issues: How do I take a “representative” sample? How do I get unbiased estimates of population parameters? How precise are these estimates? What is an optimal sampling design? “The sample looks like the population”: If it is correctly sampled If it is large enough

Basic definitions Population: a well defined set of elements (“sampling units”) about which we want to make inferences Example 1: All Croatian adults (discrete population) Example 2: Brain of rat no. 179 (continuous population) Example 3: Brains of 25-day-old male Wistar rats (superpopulation) Parameter: a well defined numerical quantity relating to the population Example 1: Average height of Croatian adults Example 2: Total brain volume of rat no. 179 Example 3: Average total neuron volume of 25-day-old male Wistar rat Sample: a set of individuals taken from the population Example 1: Ivo Ivić and Pero Perić Example 2: Twenty sections from brain of rat no. 179 Example 3: Brains from 25-day-old male Wistar rats Uniform sampling: a mechanism for choosing samples randomly so that every sampling unit in the population has the same probability of being selected for the sample

Apsolutno najčešća pogreška u znanstvenim rukopisima je: For normally distributed data the standard deviation (SD) has some extra information, namely the 68-95-99.7 rule, which tells us the percentage of data lying within 1, 2 or 3 standard deviation from the mean Of course, if the data are not normally distributed such interpretation is not valid. It remains that standard deviation can still be used as a measure of dispersion even for non-normally distributed data. The Standard error of the mean (SEM) is a measure of how precise is our estimate of the mean The main use of the standard error of the mean is to give confidence intervals around the estimated means where it follows the same 68-95-99.7 rule BUT this time not for the data itself but for the mean.

When to use SD and SEM? IF the scatter is caused by biological variability, we should report SD (not SEM) IF we are using a system with no biological variability, the scatter can only result from experimental imprecision (which has no biological meaning), then it is more sensible to report SEM (SD would be less useful here), because SEM will give readers a sense how well you have determined the mean

Reprezentativan i randomiziran uzorak Randomizacija pomoću računala Ako se zbog bilo kojeg razloga čini neispravno, treba randomizirati ponovno Iako to nije varanje, ako je uzorak reprezentativan, to se ni ne bi smjelo dogoditi (odnosno, treba napraviti nepristrana pravila unaprijed) Ruxton GD, Colegrave N. Experimental Design for the Life Sciences, Oxford University Press, New York, 2011

Odabir primjerenog broja replikata (test snage) 1. veličina učinka (npr. koliko će dodatak prehrani povećati masu pilića tj. razlika između srednje vrijednosti mase pilića hranjenih normalnom hranom i hranjenih isto + dodatak) 2. količina slučajnih varijacija u uzorku koji mjerimo (nastaje zbog svih ostalih čimbenika koji utječu na brzinu rasta mase pilića) 3. dizajn pokusa (i odabrani statistički test) 4. broj neovisnih replikata 1. i 2. odražavaju biologiju sustava koji proučavamo 3. i 4. su u kontroli istraživača Ruxton GD, Colegrave N. Experimental Design for the Life Sciences, Oxford University Press, New York, 2011

U odnosu na postavljenu hipotezu možemo napraviti: Pogrešku tipa I: test (slučajno) ukazuje da učinak postoji, iako ga zapravo nema Pogrešku tipa II: test ukazuje da učinak ne postoji, iako je on uistinu prisutan (npr. kod mjerenja štetnog učinka na embrij, povisit ćemo stopu pogreške tipa I, a da bi se pogreška tipa II još više smanjila) Kako izgleda stvarni svijet Što otkriva pokus Kompeticija nema učinka Kompeticija ima učinka Kompeticija utječe na veličinu žižka Pogreška tipa II Ispravan zaključak (razlika nije slučajna) Kompeticija ne utječe na veličinu žižka Ispravan zaključak Pogreška tipa I (slučajno smo izabrali neuobičajeno velike žiške u jednoj i neuobičajeno male u drugoj skupini) Stupanj pogreške tipa I je u potpunosti u kontroli istraživača i bit će određena razinom signifikantnosti odabrane za neki stat. test. U prirodnim i biomedicinskim znanostima, ova stopa  = 0.05 se smatra prihvatljivom (kad bi ju još više snizili, povećala bi se vjerojatnost za činjenje pogreške tipa II, a nemoguće je istodobno smanjiti obje). Ruxton GD, Colegrave N. Experimental Design for the Life Sciences, Oxford University Press, New York, 2011

Kako izračunati veličinu uzorka za neku hipotezu (tj Kako izračunati veličinu uzorka za neku hipotezu (tj. napraviti test snage): Snaga kojom testiramo neku hipotezu je vjerojatnost da nećemo počiniti pogrešku tipa II Stupanj pogreške tipa II = 1 - snaga testa snaga ovisi o stupnju značajnosti , veličini uzorka, te veličini učinka http://rpsychologist.com/d3/NHST/ (izračunavanje snage, veličine učinka i veličine uzorka) http://www.socscistatistics.com/effectsize/Default3.aspx (izračunavanje veličine učinka) Ruxton GD, Colegrave N. Experimental Design for the Life Sciences, Oxford University Press, New York, 2011

Eksperimentalni dizajn Tipovi kontrolnih skupina - netretirana (negativna) vs. eksperimentalna pozitivna k. (npr. postojeća th metoda) vs. nova povijesna Tipovi pokusa s obzirom na kontrolnu skupinu slijepi (procjenjivač ne zna je li ispitanik ili uzorak iz tretirane ili netretirane skupine dvostruko slijepi (ni liječnik niti bolesnik ne znaju u kojoj su skupini, dodatno se pokus ojačava placebom = potpuno identičan pravom tretmanu, osim parametra koji se istražuje; kod eksp. manipulacije vrši se sham operacija) Ruxton GD, Colegrave N. Experimental Design for the Life Sciences, Oxford University Press, New York, 2011

Eksperimentalni dizajn Grupiranje (blocking) Uvodimo ako neki čimbenik dovodi do značajnog rasipanja rezultata; grupirati se može svaki čimbenik za koji se pretpostavlja da doprinosi varijabilnosti među jedinkama/uzorcima, obično se grupira prema osobinama, prostoru i vremenu uravnotežen, randomiziran, sparen (parovi sličnih jedinki/osoba/uzoraka) Za uzorke kontinuiranih varijabli (npr. dob) za koje očekujemo linearne relacije mogu se koristiti kovarijati (ANCOVA – analiza kovarijata) Ruxton GD, Colegrave N. Experimental Design for the Life Sciences, Oxford University Press, New York, 2011

Eksperimentalni dizajn Nezavisni uzorci Zavisni uzorci (dizajni unutar subjekta) Glavni nedostatci: Učinci slijeda (slijedove treba randomizirati ili koristiti dizajn „podijeljenog polja” jer je nemoguće npr. izorati jedan dio polja na više načina) Reverzibilnost (trebali bi biti sposobni vratiti ispitanike u prvotno stanje, npr. testiranje dviju tehnika učenja čitanja) Preneseni učinci (npr. učinak iz prvog slijeda još traje, uvođenje razdoblja „ispiranja” npr. jednoga lijeka) Ruxton GD, Colegrave N. Experimental Design for the Life Sciences, Oxford University Press, New York, 2011

Terminologija Opservacijsko / intervencijsko istraživanje Longitudinalno / presječno / kohortno (unutar njega: ugnježđeno istraživanje parova) istraživanje Prospektivno / retrospektivno istraživanje Istraživanje parova (case-control) istraživanje (raspoređujemo ispitanike na temelju ishoda, a ne uzroka)

Ponešto o mjerenjima u neurohistologiji (stereologiji) = statistička metodologija za kvantitativnu procjenu geometrijskih objekata, odnosno njihovog broja, duljine, površine presjeka, površine, volumena u praksi, to je skup alata za učinkovitih metoda za dobivanje nepristranih informacija o 3D objektima na temelju mjerenja izvršenih na 2D mikroskopskim preparatima Urednik J Comp Neurol (časopis s najvećom mogućom reputacijom u neuroznanosti koji neprekinuto izlazi od 1891. godine) u uvodniku iz 1991. godine napisao je kako časopis više ne prihvaćaju rukopise ako kvantitativna analiza nije napravljena na navedenim nepristranim stereološkim načelima (Clifford Saper, J Comp Neurol,1991)

Why is stereology better than the “classical morphometry”? Focuses on total parameters (e.g., total cell number) not densities (Image J, NIH) Avoids all known sources of methodological biases (e.g., assumption that a cell is a sphere, split cells and “lost caps” ) Avoids inappropriate correction formulas However, tissue processing requirements differ from assumption-based methods (probes, i.e. sections should be IUR = isotropic and uniformly random). Such sections are usually unusable for routine qualitative analysis (e.g. cortical sections)

A histological section is a biased sample of particles In a stack of serial sections, relatively taller cells are represented on relatively more sections In contrast to classical (old) quantitative methods, new (modern) stereological methods avoid this bias

Some basic concepts of modern stereology 1. Estimation / sampling 2. Accuracy / unbiasedness (točnost i nepristranost) 3. “Significance” 4. Explanation of results obtained

1. Estimation Usually, we cannot “determine” the value of a parameter unless we exhaustively sample the entire material Instead, we infer the parameter value from a sample, subject to random error – this is statistical estimation Variance is a random fluctuation between data values or between successive repetitions of the experiment

1. Sampling Estimates should refer to a biologically meaningful reference spaces in a defined population Sampling should be representative i.e. uniform random (every member of the population needs to have an equal chance of being selected for the sample) Requires that the structure of interest can be unambiguously defined

The “reducing fraction” problem of sampling The effect of increasing magnification decreases the proportion of the original object being sampled

Hierarchical nature of sampling for microscopy Uniform random sampling should be employed at every level of the sampling hierarchy (in other words: At no stage should anything within the defined reference space be ‘chosen’) Use nomograms to spare time (Gundersen and Jensen, 1987; Gundersen, 1999)

Sampling can be optimized for maximum efficiency ("Do More Less Well") In a typical biological experiment the overall observed variance (the “spread” of a distribution around its mean) consists of the following relative components: 70% inter-individual (biological) 20% between blocks 5% between sections 3% between fields 2% between meas. Message: Concentrating on making very precize individual measurements will at best only increase the precision of the overall experiment by about 2%!

Sampling can be biased An illustration of how the moving averages of an unbiased estimator of N behave as an experiment is replicated Bias is the difference between the expected value of an estimator and the true parameter value Sources of bias: Wrong calibration Observer effects (proma- tračev pomak) Varijabilnost među proma- tračima (interobs. variability) Incorrect assumptions Wrong sampling, Any type of selection pristranost promatrača Systematic error = sustavna promjena bias Ocjena ponovljivosti: dobra ponovljivost ukazuje na malu nepreciznost, ali ne govori ništa o nepristranosti (tj. „možeš biti konzistentan, ali konzistentno u krivu”) The magnitude of the bias B is unknown = totally invisible at the end of an experiment (you simply have a numerical estimate and there is no way to determine bias from your data!) The presence or absence of bias depends mostly upon the experimental or sampling method used

Slučajne pogreške mogu se smanjiti povećavanjem broja mjerenja, ali se neće smanjiti stupanj pristranosti ako postoji; dakle, treba minimizirati PRISTRANOST ESTIMATORA ako znaš da je estimator potpuno nepristran onda preciznost lako mjeriš varijancom odnosno SD kao što je već rečeno, povećavanje broja mjerenja neće smanjiti biološku varijabilnost – za to je jedino rješenje povećanje broja analiziranih jedinki

Biases do not cancel each other It is often argued that biased measurements may be used when we want to compare two experimental groups However, this is only justified if the bias in both cases is equal (what we usually just don’t know)

Unbiased sampling regimes Independent random sampling (randomly generates a sample of fixed size) Systematic random sampling (samples a fixed proportion 1/m of total population; starts at random and count every mth item; the sampling probability is 1/m) Cluster sampling (after grouping items into arbitrary “clusters”, use an unbiased sampling method to select some of the clusters) Stratified random sampling (divide the population into subpopulations or strata and sample every stratum by an unbiased sampling rule)

Gundersen and Jensen, J. Microsc. 1987; 147: 229-263

Gundersen and Jensen, J. Microsc. 1987; 147: 229-263

2. Accuracy / unbiasedness Accuracy cannot be ‘bought’ by working harder: Accuracy can only be guaranteed by using ‘tools’ (methods) that are inherently unbiased In stereology this means start with the uniform random sampling that is followed by the application of a set of unbiased ‘geometrical questions’ in 3D (probes) The a priori guarantee of accuracy of these methods, without the need for validation studies, is a major advantage: They can literary be ‘taken off the shelf’ and used in any situation!

Do not mix accuracy (unbiasedness) with efficiency (precision) It is possible to have a biased estimator which is ‘efficient’ (converges on to a stable value quickly and has small SD), as well as inefficient unbiased estimator Točno i precizno Točno i neprecizno Only if you know that you have an unbiased estimator, you can use variance or SD to measure precision. Low variability Točno i neprecizno Neočno i neprecizno High variability

Factors contributing to variance Instrument noise Sampling variation Biological variation Dependence on uncontrolled factors Oberver effects (counting errors), etc. Variance can be estimated empirically, but is unrelated to bias. Random error can be decreased by taking more data; bias will not decrease. So, it is important to minimize bias of estimators.

Glavna obilježja svih bioloških biljega 1 (Patološka) specifičnost 2 (Rana dijagnostička) osjetljivost 3 Korelacija s progresijom bolesti = da su negativni stvarno negativni Sensitivity = hit rate=TPR=TP/P=TP(TP+FN) FPR=1-TPR=FP/N = da su pozitivni stvarno pozitivni Specifičnost i osjetljivost nekog biljega ne mogu se promatrati odvojeno. Prema preporukama međunarodnih konzorcija „idealan” biološki biljeg bi trebao imati i specifičnost i osjetljivost veću od 85%.

Grafički prikaz klasifikacijske f-je biljega (međuodnosa specifičnosti i osjetljivosti) Točno klasificirani ispitanici Svi negativni + lažno pozitivni ispitanici

Glavni razlozi zašto je teško povećati točnost likvorskih biomarkera u dijagnostici NDD: 1. jer je konverzija MCI u AD samo oko 9.6% godišnje (i to u specijaliziranim ustanovama), pa je potrebno dugo vrijeme praćenja (7-10 godina) da bi se točnost mogla povećati (Mitchell and Shiri-Feshki, Acta Psychiatr. Scand., 2009). 2. jer likvorski markeri bolje koreliraju s neuropatološkom nego s kliničkom dijagnozom, što dovodi do smanjenja točnosti navedenih markera od 14-17% (Toledo et al., Acta Neuropathol., 2012). 3. jer još uvijek nije provedena kritično neophodna standardizacija izlučnih vrijednosti („cut-off values”) pojedinih bioloških biljega u dijagnostici NDD. Da bi se standardizirale izlučne vrijednosti potreban je veliki broj uzoraka. U jednoj od najvećih studija bilo je uključeno 40 laboratorija, a za određivanje koncentracija biomarkera su korišteni kitovi triju različitih proizvođača (Innogenetics, Invitrogen Biosource, Meso Scale Discovery). Izmjerene razine biomarkera u stratificiranim skupinama bolesnika bile su dramatično različite, a koeficijent varijacije je varirao od 13-36% (Mattsson N. et al., The Alzheimer’s Association external quality control program for cerebrospinal fluid biomarkers, Alzheimers Dement., 2011, 7, 386-395).

Babić et al., Transl. Neurosci., 2013

The sensitivity and specificity are not high enough to warrant use of repeated MMSE testing as a widespread screening instrument for dementia. The sensitivity of repeated MMSE (2 successive administrations of the MMSE, about 3 months apart, N=1449) for detecting dementia was 68%, and the specificity was 70% for MMSE ≥ 24 (PPV, 42% - the small positive predictive value indicates that many of the positive results from this testing procedure are false positives; NPV, 88% - if negative for an individual, gives us a high confidence that its negative result is true). PPV testa za neko stanje = udio osoba pozitivnih za to stanje koje zaista u njemu i jesu (prevalencija tog stanja); NPV = obrnuto Repeated MMSE: A Screening Instrument for Alzheimer's Disease? J. Watch 2003; 2(4)

Stršala („outliers”) treba provjeriti - obično se radi o krivom unosu ili tehničkom problemu (artefaktu) koji je nastao prilikom prikupljanja podataka – i, nakon provjere, izbaciti prije statističke analize Boban et al., Dement Geriatr Cogn Disord 2012

Boban et al., Dement Geriatr Cogn Disord 2012

Boban et al., Dement Geriatr Cogn Disord 2012

3. “Significance” “My two experimental groups gave different results. Does this prove they are different, or is it just the result of random variation?” Use: - regressions - formal significance tests for H0 - other statistical methods

4. Explanation Analyze response variables vs. explanatory variables Try to attribute variability to different factors (sources of variability) such as: Age Gender Different experimental conditions, etc.... Analyze response variables vs. explanatory variables Analyze systematic effects vs. random effects

Example Explain brain weight of rat as combination of several influences: Weight = population mean + litter effect + indiv. variation Rats from the same litter differ less than rats from diff. litters Var(weights) = Var (litter effects) + Var (indiv. deviations) Estimate this by comparing rats within a litter Estimate this from all rats Estimate this by comparing litter means

III. Some of the most commonly used stereological methods 1. Cavalieri principle for volume estimation 2. Physical disector for number estimation 3. Optical disector for number estimation 4. Optical fractionator for number estimation

1. Estimation of reference volume using the Cavalieri method V= t . A(p) . P t=average slab thickness =distance between section planes A(p)=area per test point corrected for magnification P=total number of test-points hitting the structure

Tissue shrinkage Due to dehydration and embedding Differential shrinkage must be calculated (for the 3rd dimension, use the sqare root of the calculated areal shrinkage) Final volume can be only 26% of original (fetal brain has higher % of water) (Pakkenberg, 1966)

Stereological probes Feature = geom. feature of a 3D object to which the probe is sensitive d = n – k d = feature dimension n = dimension in which objects are embedded k = dimension of a probe Only if d=n or k=n, the distribution of estimated objects is irrelevant

The unbiased brick counting rule for number estimation (Howard et al A particle is counted if it is totally inside the brick or if it intersects any of the acceptance (inclusion) planes and does not intersect any of the forbidden surfaces anywhere. Inclusion planes (surfaces) The unbiased brick counting rule is a general 3D counting rule that is applicable for particles of any shape and size. If the particles of interest are convex, such as nerve cell nuclei, then the optical disector can be used (Gundersen, 1986).

Optical disector (about 5x faster than physical) Not counted (topmost plane is exclusion plane) Is counted (nucleus touches the inclusion line) Not counted (cuts the forbidden line) Profile is sampled and f) are counted (bottom plane is inclusive) Dark nuclei are in maximal focus

Fractionator principle (2D example)

Optical fractionator (3D) Outline a region of interest at a low magnification. The region may encompass several fields of view. Once a region of interest has been defined, count cells at high power. The image on the right shows a counting frame for an optical fractionator probe superimposed on a live video image.

Optical fractionator (3D) The overall fraction of the object sampled = ssf . asf . hsf Total number of particles in the object = Q . 1/hsf . 1/asf . 1/ssf

Scheme of the multi-stage fractionator

Example of a local probe Local probes may be integrated with global probes to measure the size of objects as they are counted. Here a nucleator is being used with an optical fractionator to measure cell area and volume.

IV. Advices and examples Šimić G et al. (1997) Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer's disease. J. Comp. Neurol. 379: 482-494. OPTICAL DISECTOR Šimić G et al. (2000) Ultrastructural analysis and TUNEL demonstrate motor neuron apoptosis in Werdnig-Hoffmann disease. J. Neuropathol. Exp. Neurol. 59: 398-407. PHYSICAL DISECTOR Šimić G et al. (2005) Hemispheric asymmetry, modular variability and age-related changes in the human entorhinal cortex. Neuroscience 130: 911-925. OPTICAL FRACTIONATOR

Properties of modern stereological methods Estimates first-order parameters of biological structures (e.g. volume, surface area, length, number) and their variability from a small sample of the population of interest. Uses highly efficient systematic sampling. Efficiency based on true variability of objects and features of biological interest.

Advances Avoids tissue processing artifacts, e.g., shrinkage/expansion, lost caps. Strong mathematical foundation in stochastic geometry and probability theory, but: Advanced mathematical background not required for users.

Computorized or not? Doesn't require computerized hardware-software systems, but: Computerized stereology systems are very efficient. Statistical power for studies of the same parameter is cumulative across populations.

Last but not least: Considered state-of-the-art by journal editors and grant review study groups Worldwide cooperation possible, in theory, through Web-accessible databases

Some of the options on the market C.A.S.T. Grid (Olympus / Zeiss) StereoInvestigator and Neurolucida (MicroBrightField) Stereologer (Systems Planning and Analysis)

Two most important references: 1. Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. Gundersen, H.J.G., T.F. Bendsen, L. Korbo, N. Marcusen, A. Moller, K. Nielsen, J.R. Nyengaard, B. Pacakkenberg, F.B. Sorensen, A. Vesterby, and M.J. West. APMIS 96: 379-394. 1988. 2. The new stereological tools: Disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. Gundersen, H.J.G., P. Bagger, T.F. Bendsen, et. al. APMIS 96: 857-881. 1988. http://www.stereologer.com/Stereo_Exec.html

Conclusion The key to doing science efficiently is to: Always use valid techniques (strive for techniques that are guaranteed to be unbiased) Balance the accuracy of the estimate against the cost of performing the experiment

Poglavlje 6 (završne misli) Kako odabrati razine tretmana Uporaba nebalansiranih skupina iz etičkih razloga (smanjiti patnju uz zadržavanje statističke snage): npr. povećanjem ukupnog broja ispitanika uzoraka uz istu statističku snagu (5 tretiranih / 20 netret. (kontrole) = 10 / 10) manja kontrolna skupina opravdana je ako već postoji dovoljna količina znanja o ishodima tog poznatog tretmana

Sheme uzorkovanja Nasumično Neprekinuto (kontinuirano) – prikupljanje prestaje kad skupimo dovoljno podataka za odgovor (kad uzorkovanje prestaje treba definirati prije početka uzorkovanja) Slojevito (stratificirano) – najprije se definiraju područja uzorkovanja, npr. staništa a zatim se u njima izvrši nasumično uzrokovanje Sustavno (nije nasumično) – vrijedi isto kao i za randomizirane / reprezentativne uzorke (izvadi 5 od 1-100): unaprijed znati kako će se analizirati Dizajni latinskog kvadrata („sudoku”)

Važnost interakcija Simpsonov paradoks (1951): nekritičko sumiranje podataka bez razmatranja trećih varijabli

Masa tijela Veličina mozga Plavo = žene Crveno = muškarci Ako se zanemari spol, čini se da se veličina mozga smanjuje s povećanjem mase tijela Veličina mozga Bez detaljnog razmatranja trećih varijabli, mogu se donijeti potpuno neprimjereni zaključci o uzročnim čimbenicima!

Rudarenje podataka https://arxiv.org/abs/1702.06831

Feel free to contact me later on: gsimic@hiim.hr Possible applications in your own research? Feel free to contact me later on: gsimic@hiim.hr