Materiale electrotehnice noi

Slides:



Advertisements
Similar presentations
Dr. Mike Nofziger 2010 “LASERS” Light Amplification by the Stimulated Emission of Radiation.
Advertisements

Lasers Jerri Montelongo Laser Safety Officer Mission Hospital.
Laser Communication PRESENTED BY, TRISHA PAUL TRISHA PAUL Dept. ECE(8th sem) Dept. ECE(8th sem) Roll No Roll No Reg. No
John stemler, Andy Barrus, Sean Osinski
PHYS 252 Lasers1 Lasers What is stimulated emission? Well, there are two types of light emission that can occur with atoms! The kind that we have been.
Spectrophotometer Light Sources: Lasers. L.A.S.E.R. Acronym for: light amplification by stimulated emission of radiation Basic principle of lasing: population.
ight mplification of ight mplification of ight mplification of timulated ight mplification of timulated.
How Lasers Work. Lasers show up in an amazing range of products and technologies. You will find them in everything from CD players to dental drills to.
Lasers* * Light Amplification by Stimulated Emission of Radiation
Types of Laser Based on the mode of operation (i) Pulsed Laser systems
Laser (Light Amplification by Stimulated Emission of Radiation)
LASER APPLICATIONS TO MEDICINE AND Prof. Dr. Moustafa. M. Mohamed Vice Dean Faculty of Allied Medical Science Pharos University Alexandria Dr. Yasser khedr.
BASICS OF LASERS AND LASER LIGHT
Lasers. Spontaneous Emission  Atomic electrons can be excited by external radiation. EM wavesEM waves Electrons in a fieldElectrons in a field  Atoms.
LASERs Light Amplification by Stimulated Emission of Radiation.
LASER APPLICATIONS TO MEDICINE AND Prof. Dr. Moustafa. M. Mohamed Vice Dean Faculty of Allied Medical Science Pharos University Alexandria Dr. Mervat Mostafa.
Lasers and Optics By Adam Abawi. Lasers vs. Light A laser differs from other sources of light in that it emits light in a narrow straight line A laser.
Light Amplification by Stimulated Emission of Radiation is a mechanism for emitting electromagnetic radiation, often visible light, via the process of.
Laser Pulse Generation and Ultrafast Pump-Probe Experiments
TYPES OF LASER Solid State lasers:Ruby laser, Nd:YAG laser, Nd:Glass laser Gas lasers:He-Ne laser, CO 2 laser, Argon laser Liquid/Dye lasers:Polymethene.
A Novel Approach AAKASH GUPTA UE5501 B.E. (E.C.E.) 8 TH SEMESTER.
Prepared by:- Bhojak Shyam Branch:- C.E( 1 st Semester ) Enroll. No. :
Facultatea de Inginerie Electrica, Materiale electrotehnice noi, , master IPE, anul I Prof.dr.ing.Florin Ciuprina Materiale electrotehnice noi.
Laser. Lesson objectives What is laser? What is laser? Applications of laser around us Applications of laser around us Laser radiation hazards Laser radiation.
Low-Power Lasers Jennifer L. Doherty-Restrepo, MS, ATC, LAT Entry-Level Master Athletic Training Education Program PET 4995: Therapeutic Modalities.
Proprietati electrice
Chapter 10.3 Laser Light. Diffraction grating separates the wavelengths emitted by white light. The array of wavelengths emitted by a white light is called.
SHRI DADAJI INSTITUTE OF TECHNOLOGY & SCIENCE A SEMINAR ON LASER COMMUNICATION PRESENTED BY: HITESH SILARPURIYA E.C. FOURTH SEM.
Major Concepts of Physics PHY 102 – Lecture #  Syracuse University Lecture #19 How does a laser work? April 6 th Spring 2016 Prof. Liviu Movileanu.
 LIGHT  AMPLIFICATION BY  STIMULATED  EMISSION OF  RADIATION.
The History of LASER Introduction Principle of Spontaneous emission and stimulated emission. Population inversion, pumping. Einsteins A and B coeffcients.
Many-electron atoms CHAPTER 8 Many-electron atoms What distinguished Mendeleev was not only genius, but a passion for the elements. They became his personal.
Laserlaser. Laser printer Laser pointer Laser: everywhere in your life.
LASER BEAM What is LASER BEAM ? The term laser is an acronym for Light Amplification by Stimulated Emission of Radiation. A laser beam is a powerful,
Frecvenţmetrul numeric
LASERS By : Lucía Vicario and Tania Martín. WHAT IS IT? A laser is a device that emits light through a process of optical amplification based on the stimulated.
Many-electron atoms CHAPTER 8 Many-electron atoms Dimitri Mendeleev Homework due Wednesday Oct. 29th: Chapter 7: 18, 20, 24, 25 Chapter 8: 1, 2, 4, 8,
Light Amplification by Stimulated Emission of Radiation By: James Vanderburg & J.P. Brown.
LASER TECHNOLOGY PRESENTED BY: ASHWINI KU. PADHI ROLL NO
PRESENTED BY: AMANDEEP SINGH B.Sc 2(NON-MED) ROLL NO. 1042
MEDICAL LASER SYSTEMS Assist Prof. Dr. Lutfi Ghulam Awazli
• Very pure silicon and germanium were manufactured
Chapter 9. Optoelectronic device
Laser in Dentistry By Hisham Sindi.
Fundamentals of Laser Operation
CHAPTER 8 Many-electron atoms
Types of Laser Based on the mode of operation (i) Pulsed Laser systems
Photonics-More 22 February 2017
Properties of Laser There are Severel Properties Of LASER which are defined as follows:- MONOCHROMATICITY COHERENCE DIRECTIONALITY BRIGHTNESS DIVERGENCE.
LIGHT WAVES.
TEHNOLOGIA MATERIALELOR II (TCM) MICROTEHNOLOGII (IEI)
Lasers* Prof. Rick Trebino, Georgia Tech
Photonics-LED And LASER 29 February 2016
Retele de calculatoare
EFECTUL LASER.
CARBONUL.
Laser Light overview.
Aplicatii Practice ale Microcontrolelor
Medii informatice utilizate pentru proiectare
6a Students know visible light is a small band within a very broad electromagnetic spectrum.
AUTOMOBILUL ELECTRIC UNIVERSITATEA POLITEHNICA
EFECTUL LASER Achim Anamaria,Vlad Lenuta Clasa a XII a D
Fotonică pe siliciu Silicon-Photonics
FACULTATEA DE INGINERIE ELECTRICA –Universitatea Politehnica Bucuresti
Semiconductors: A General Introduction
Lasers. You know magic and stuff
• Very pure silicon and germanium were manufactured
Photonics-More 6 March 2019 One More slide on “Bandgap” Engineering.
Presentation transcript:

Materiale electrotehnice noi Materiale semiconductoare noi Facultatea de Inginerie Electrica, Materiale electrotehnice noi, 2009-2010, master IPE, anul I Prof.dr.ing.Florin Ciuprina

Structura disciplinei Materiale semiconductoare noi Structura disciplinei Capitolul Conţinutul 1 Fenomene in materialele electrotehnice 1.1. Conductia electrica 1.2. Polarizarea electrica 1.3. Magnetizarea materialelor 1.4. Pierderi in materialele electrotehnice 2 Materiale conductoare noi 2.1. Materiale conductoare clasice 2.2. Materiale supraconductoare 2.3. Conductori organici si nanotuburi de carbon 2.4. Materiale pentru realizarea de memristori 2.5. Aplicatii moderne ale materialelor conductoare 3 Materiale semiconductoare noi 3.1. Materiale semiconductoare clasice 3.2. Polimeri semiconductori 3.3. Materiale semiconductoare nanostructurate 3.4. Aplicatii moderne (celule solare, microprocesoare de inalta frecventa, ecrane TV, laseri) 4 Materiale dielectrice noi 4.1. Evolutia materialelor dielectrice 4.2. Straturi subtiri 4.3. Nanodielectrici 4.4. Oxizi metalici 4.5. Aplicatii 5 Materiale magnetice noi 5.1. Evolutia materialelor magnetice 5.2. Materiale magnetice amorfe 5.3. Materiale magnetice nanostructurate (nanocristaline, organice) 5.4. Fire si filme subtiri din materiale magnetice 5.5. Aplicatii moderne (miezuri magnetice, memorii, hard-discuri, carduri magnetice)

Materiale semiconductoare Materiale semiconductoare noi Materiale semiconductoare Materiale semiconductoare clasice Polimeri semiconductori Materiale semiconductoare nanostructurate Aplicatii moderne

Materiale semiconductoare Materiale semiconductoare noi Materiale semiconductoare Materiale semiconductoare clasice Polimeri semiconductori Materiale semiconductoare nanostructurate Aplicatii moderne

Materiale semiconductoare clasice Materiale semiconductoare noi Materiale semiconductoare clasice Siliciu (Si) cristalizeaza in retea de tip diamant utilizari: circuite integrate diode tiristoare tranzistoare baterii solare traductoare Hall Caracteristica Si Permitivitatea relativa 11 Rezistivitatea intrinseca la 300 K [Ωm] (2,5-3) 103 Largimea benzii interzise Fermi la 300 K [eV] 1,105 Mobilitatea electronilor la 300 K [m2/(Vs)] 0,145 Mobilitatea golurilor la 300 K [m2/(Vs)] 0,048

Materiale semiconductoare clasice Materiale semiconductoare noi Materiale semiconductoare clasice Germaniu (Ge) cristalizeaza in retea de tip diamant utilizari: diode tunel tranzistoare detectoare de radiatii traductoare Hall termometre pentru temperaturi joase Caracteristica Ge Permitivitatea relativa 16 Rezistivitatea intrinseca la 300 K [Ωm] 0,47 Largimea benzii interzise Fermi la 300 K [eV] 0,665 Mobilitatea electronilor la 300 K [m2/(Vs)] 0,39 Mobilitatea golurilor la 300 K [m2/(Vs)] 0,19

Materiale semiconductoare clasice Materiale semiconductoare noi Materiale semiconductoare clasice Seleniu (Si) prezinta o mare varietate de stari alotropice: sticlos, amorf, cristalin utilizari: fotoelemente, redresoare etc. Carbura de siliciu (SiC) prezinta o mare varietate de politipuri cristaline utilizari: varistoare si dispozitive de mare putere, rezistente la radiatii, care lucreaza la frecvente si temperaturi mari

Materiale semiconductoare clasice Materiale semiconductoare noi Materiale semiconductoare clasice Compusi semiconductori AII - BVI ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe utilizari: fotorezistoare, generatoare Hall, traductoare de presiune etc. Compusi semiconductori AIII - BV InSb, InAs, InP, GaSb, GaAs, AlSb utilizari: diode tunel, tranzistoare, in optoelectronica etc.

Materiale semiconductoare Materiale semiconductoare noi Materiale semiconductoare Materiale semiconductoare clasice Polimeri semiconductori Materiale semiconductoare nanostructurate Aplicatii moderne

Polimeri conductori Polimerii dupa anii ’70: ieftini, Materiale semiconductoare noi Polimeri conductori Polimerii dupa anii ’70: ieftini, rezistenta mecanica foarte buna, flexibili izolatori electrici (σ < 10-7 S/m) prin dopare unii polimeri pot deveni conductori sau semiconductori.

Polimeri semiconductori Materiale semiconductoare noi Polimeri semiconductori Conditii de obtinere: Polimer realizat prin alternarea de legaturi simple si legaturi duble (conjugate) = polimer conjugat Perturbarea polimerului conjugat prin dopare: extragere de electroni (oxidare) dopanti acceptori (tip p): I2, PF6, BF6, Cl, AsF6 introducere de electroni (reducere) dopanti donori (tip n): Na, K, Li, Ca

Polimeri semiconductori Materiale semiconductoare noi Polimeri semiconductori Structuri uzuale: Polyethylenedioxythiophene (PEDOT) Polyphenylene vinylene (PPV) Polydialkylfluorene

Polimeri semiconductori Materiale semiconductoare noi Polimeri semiconductori Conductia electrica: deplasarea intramoleculara a cvasi-particulelor (solitoni, polaroni, bipolaroni) create prin dopare transferul intermolecular al sarcinilor electrice prin “intersoliton hopping”

Polimeri semiconductori Materiale semiconductoare noi Polimeri semiconductori Conductia electrica: deplasarea intramoleculara a cvasi-particulelor (solitoni, polaroni, bipolaroni) create prin dopare

Polimeri semiconductori Materiale semiconductoare noi Polimeri semiconductori Conductia electrica: deplasarea intramoleculara a cvasi-particulelor (solitoni, polaroni, bipolaroni) create prin dopare Formarea si deplasarea unui polaron in poliacetilena

Polimeri semiconductori Materiale semiconductoare noi Polimeri semiconductori Conductia electrica: deplasarea intramoleculara a cvasi-particulelor (solitoni, polaroni, bipolaroni) create prin dopare

Polimeri semiconductori Materiale semiconductoare noi Polimeri semiconductori Conductia electrica: deplasarea intramoleculara a cvasi-particulelor (solitoni, polaroni, bipolaroni) create prin dopare transferul intermolecular al sarcinilor electrice prin “intersoliton hopping” Intersoliton hopping: solitoni incarcati su sarcina (jos) sunt fixati de catre ionii dopantului, in timp ce solitonii neutri (sus) se misca liber. Un soliton neutru de pe un lant apropiat de un lant cu un soliton incarcat cu sarcina pot interactiona si electronul solitonului neutru sare dintr-un defect in altul.

Polimeri semiconductori Materiale semiconductoare noi Polimeri semiconductori Controlul dopajului:

Aplicatii ale polimerilor semiconductori Materiale semiconductoare noi Aplicatii ale polimerilor semiconductori Tranzistoare cu efect de camp – FET poli(o-metoxianilina) - POMA

Aplicatii ale polimerilor semiconductori Materiale semiconductoare noi Aplicatii ale polimerilor semiconductori Polimer LED - PLED

Materiale semiconductoare Materiale semiconductoare noi Materiale semiconductoare Materiale semiconductoare clasice Polimeri semiconductori Materiale semiconductoare nanostructurate Aplicatii moderne

Materiale semiconductoare nanostructurate Materiale semiconductoare noi Materiale semiconductoare nanostructurate Filme din siliciu policristalin (poly-Si) metoda de fabricatie: depunere chimica de vapori la presiune scazuta si temperaturi de peste 600 °C, utilizand silan ca gas precursor. avantaje fata de Si monocristalin: mobilitatea purtatorilor este cu cateva ordine de marime mai mare, are stabilitate mai mare sub actiunea solicitarilor campului electric si a luminii. utilizari: celule solare pentru panouri solare de, circuite integrate la scara mare, MEMS, tranzistoare TFT etc.

Materiale semiconductoare nanostructurate Materiale semiconductoare noi Materiale semiconductoare nanostructurate Filme nanostructurate din oxizi metalici (TiO2, SnO2, ZnO) metoda de obtinere: prin hidroliza controlata din suspensii coloidale preformate utilizari: senzori de gaz, celule fotovoltaice

Materiale semiconductoare nanostructurate Materiale semiconductoare noi Materiale semiconductoare nanostructurate Filme din oxizi metalici modificate cu produsi semiconductori AII – BVI (CdSe, CdS, CdTe) metoda de obtinere: prin precipitare chimica a produsilor AII – BVI direct pe substrat, si absorbtia selectiva a ionilor din solutie. utilizari: LED-uri, microelectronica

Materiale semiconductoare Materiale semiconductoare noi Materiale semiconductoare Materiale semiconductoare clasice Polimeri semiconductori Materiale semiconductoare nanostructurate Aplicatii moderne

Aplicatii moderne ale semiconductorilor Materiale semiconductoare noi Aplicatii moderne ale semiconductorilor Ecrane cu cristale lichide (LCD) Cristale lichide (faze mezomorfe, mezofaze): materiale care pot sa curga ca un lichid, dar ale caror molecule pot fi orientate ca intr-un cristal; Materiale: compusi organici (cianobifenil), compounduri polimerice etc. Mezofaze: nematice, smectice, chiralice, albastre. cianobifenil

Aplicatii moderne ale semiconductorilor Materiale semiconductoare noi Aplicatii moderne ale semiconductorilor Ecrane cu cristale lichide (LCD) folosesc cristale lichide cu structuri nematic rasucite TN (twisted nematic)

Aplicatii moderne ale semiconductorilor Materiale semiconductoare noi Aplicatii moderne ale semiconductorilor Ecrane cu cristale lichide (LCD) cu matrice activa (tehnologie TFT) cu matrice pasiva

Aplicatii moderne ale semiconductorilor Materiale semiconductoare noi Aplicatii moderne ale semiconductorilor Laseri (Light Amplification by Stimulated Emission of Radiation) Caracteristici: lumina monocromatica lumina unidirectionala lumina coerenta (“organizata”)

Aplicatii moderne ale semiconductorilor Materiale semiconductoare noi Aplicatii moderne ale semiconductorilor Laseri (Light Amplification by Stimulated Emission of Radiation) Tipuri: Solid-state lasers have lasing material distributed in a solid matrix (such as the ruby or neodymium:yttrium-aluminum garnet "Yag" lasers). The neodymium-Yag laser emits infrared light at 1,064 nanometers (nm). A nanometer is 1x10-9 meters. Gas lasers (helium and helium-neon, HeNe, are the most common gas lasers) have a primary output of visible red light. CO2 lasers emit energy in the far-infrared, and are used for cutting hard materials. Excimer lasers (the name is derived from the terms excited and dimers) use reactive gases, such as chlorine and fluorine, mixed with inert gases such as argon, krypton or xenon. When electrically stimulated, a pseudo molecule (dimer) is produced. When lased, the dimer produces light in the ultraviolet range. Dye lasers use complex organic dyes, such as rhodamine 6G, in liquid solution or suspension as lasing media. They are tunable over a broad range of wavelengths. Semiconductor lasers, sometimes called diode lasers, are not solid-state lasers. These electronic devices are generally very small and use low power. They may be built into larger arrays, such as the writing source in some laser printers or CD players.

Aplicatii moderne ale semiconductorilor Materiale semiconductoare noi Aplicatii moderne ale semiconductorilor Laseri (Light Amplification by Stimulated Emission of Radiation)

Aplicatii moderne ale semiconductorilor Materiale semiconductoare noi Aplicatii moderne ale semiconductorilor Laseri (Light Amplification by Stimulated Emission of Radiation)

Aplicatii moderne ale semiconductorilor Materiale semiconductoare noi Aplicatii moderne ale semiconductorilor Laseri (Light Amplification by Stimulated Emission of Radiation) Tipuri: Medicine: Bloodless surgery, laser healing, surgical treatment, kidney stone treatment, eye treatment, dentistry Industry: Cutting, welding, material heat treatment, marking parts Defense: Marking targets, guiding munitions, missile defence, electro-optical countermeasures (EOCM), alternative to radar, blinding enemy troops. Research: Spectroscopy, laser ablation, laser annealing, laser scattering, laser interferometry, LIDAR, laser capture microdissection Product development/commercial: laser printers, CDs, barcode scanners, thermometers, laser pointers, holograms, bubblegrams. Laser lighting displays: Laser light shows Laser skin procedures such as acne treatment, cellulite reduction, and hair removal.