Niels Bohr Institute, Nano-Science Center, University of Copenhagen

Slides:



Advertisements
Similar presentations
Modulation of conductive property in VO 2 nano-wires through an air gap-mediated electric field Tsubasa Sasaki (Tanaka-lab) 2013/10/30.
Advertisements

Niels Bohr Institute – University of Copenhagen
S A N T A C L A R A U N I V E R S I T Y Center for Nanostructures September 25, 2003 Surface Phenomena at Metal-Carbon Nanotube Interfaces Quoc Ngo Dusan.
Anodic Aluminum Oxide.
Carbon nanotube field effect transistors (CNT-FETs) have displayed exceptional electrical properties superior to the traditional MOSFET. Most of these.
Hot Electron Energy Relaxation In AlGaN/GaN Heterostructures 1 School Of Physics And Astronomy, University of Nottingham, University Park, Nottingham,
TECHNIQUES OF SYNTHESIZING CARBON NANOTUBE FETS FOR INTEGRATED CIRCUITS GAO, Feng S.I.D
Magnetoresistance of tunnel junctions based on the ferromagnetic semiconductor GaMnAs UNITE MIXTE DE PHYSIQUE associée à l’UNIVERSITE PARIS SUD R. Mattana,
Laterally confined Semiconductor Quantum dots Martin Ebner and Christoph Faigle.
ENEE-698E 1 st presentation by: Saeed Esmaili Sardari September 11, 2007.
Silvano De Franceschi Laboratorio Nazionale TASC INFM-CNR, Trieste, Italy  Nanowire growth and properties.
Carbon Nanotube Memory Yong Tang 04/26/2005 EE 666 Advanced Solid State Device.
Interconnect Focus Center e¯e¯ e¯e¯ e¯e¯ e¯e¯ SEMICONDUCTOR SUPPLIERS Goal: Fabricate and perform electrical tests on various interconnected networks of.
Introduction to the Kondo Effect in Mesoscopic Systems.
Kondo Effects in Carbon Nanotubes
Origin of Coulomb Blockade Oscillations in Single-Electron Transistors
Diodes Properties of SWNT Networks Bryan Hicks. Diodes and Transistors An ever increasing number in an ever decreasing area.
Nanoscale memory cell based on a nanoelectromechanical switched capacitor EECS Min Hee Cho.
Molecular Magnet: an Example of STM Application J. Wu Phys. Dept. C203 course.
MSE-630 Gallium Arsenide Semiconductors. MSE-630 Overview Compound Semiconductor Materials Interest in GaAs Physical Properties Processing Methods Applications.
VFET – A Transistor Structure for Amorphous semiconductors Michael Greenman, Ariel Ben-Sasson, Nir Tessler Sara and Moshe Zisapel Nano-Electronic Center,
Tamer Ragheb ELEC 527 Presentation Rice University 3/15/2007
Tunneling Outline - Review: Barrier Reflection - Barrier Penetration (Tunneling) - Flash Memory.
Ressonància magnètica: ESR, RMN ESR o EPR: Ressonància de Spin Electrònic, o Ressonància Paramagnètica Electrònica RMN: Ressonància Magnètica Nuclear.
Scaling of the performance of carbon nanotube transistors 1 Institute of Applied Physics, University of Hamburg, Germany 2 Novel Device Group, Intel Corporation,
Supercurrent through carbon-nanotube-based quantum dots Tomáš Novotný Department of Condensed Matter Physics, MFF UK In collaboration with: K. Flensberg,
Electronic States and Transport in Quantum dot Ryosuke Yoshii YITP Hayakawa Laboratory.
UNIVERSITY OF NOTRE DAME Origin of Coulomb Blockade Oscillations in Single-Electron Transistors Fabricated with Granulated Cr/Cr 2 O 3 Resistive Microstrips.
Lecture 23 OUTLINE The MOSFET (cont’d) Drain-induced effects Source/drain structure CMOS technology Reading: Pierret 19.1,19.2; Hu 6.10, 7.3 Optional Reading:
Electric field control of Metal- insulator phase transition in VO2 nano-wire channel Tsubasa Sasaki (Tanaka-lab) 2013/5/29.
ME 381R Fall 2003 Micro-Nano Scale Thermal-Fluid Science and Technology Lecture 11: Thermal Property Measurement Techniques For Thin Films and Nanostructures.
Photonics and Semiconductor Nanophysics Paul Koenraad, Andrea Fiore, Erik Bakkers & Jaime Gomez-Rivas COBRA Inter-University Research Institute on Communication.
Singlet-Triplet and Doublet-Doublet Kondo Effect
1 ADC 2003 Nano Ni dot Effect on the structure of tetrahedral amorphous carbon films Churl Seung Lee, Tae Young Kim, Kwang-Ryeol Lee, Ki Hyun Yoon* Future.
2D Topological insulator in HgTe quantum wells Z.D. Kvon Institute of Semiconductor Physics, Novosibirsk, Russia 1. Introduction. HgTe quantum wells. 2.
March 3rd, 2008 EE235 Nanofabrication, University of California Berkeley Hybrid Approach of Top Down and Bottom Up to Achieve Nanofabrication of Carbon.
G. Kioseoglou SEMICONDUCTOR SPINTRONICS George Kioseoglou Materials Science and Technology, University of Crete Spin as new degree of freedom in quantum.
From an Atom to a Solid Photoemission spectra of negative copper clusters versus number of atoms in the cluster. The highest energy peak corres- ponds.
Carbon Nanotube Device Fabrication John Gerling EE 235 Introduction to Nanofabrication
Carbon Nanotubes.
C 60 - Single Molecule Transistor Aniruddha Chakraborty Indian Institute of Technology Mandi, Mandi , Himachal Pradesh, India.
Carbon Nanotubes and Its Devices and Applications
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
Overview of Tandem Accelerator Facility and related R&D Work at NCP Ishaq Ahmad
Charge-Density-Wave nanowires Erwin Slot Mark Holst Herre van der Zant Sergei Zaitsev-Zotov Sergei Artemenko Robert Thorne Molecular Electronics and Devices.
A Seminar presentation on
Fabrication of Hybrid Solar Cells using ZnS Nanoparticles
Dilute moment ferromagnetic semicinductors for spintronics
DIAMOND CHIP PRESENTED BY : A.RAKESH KIRAN
Riphah International University, Lahore
Derivatization of Carbon Nanotubes by the ZnO and ZnS nanoparticles
Metal Semiconductor Field Effect Transistors
Thales Research and Technology
Lecture 7 DFT Applications
A p-n junction is not a device
6.3.3 Short Channel Effects When the channel length is small (less than 1m), high field effect must be considered. For Si, a better approximation of field-dependent.
Semiconducting SWCNTs: from materials to thin film transistors
DILBERT.
2D materials and van der Waals heterostructures
Optional Reading: Pierret 4; Hu 3
Ab initio studies on the catalytic roles of platinum-doped carbon
Coulomb Blockade and Single Electron Transistor
FROM DOPED SEMICONDUCTORS TO SEMICONDUCTOR DEVICES
Molecular Beam Epitaxy (MBE) C Tom Foxon
Abstract Results Summary
Nanocharacterization (III)
Synthesis and Applications of Semiconductor Nanowires
Electron Spin Resonance Spectroscopy of a Single Carbon Nanotube
Nanocharacterization (II)
Ultrahigh mobility and efficient charge injection in monolayer organic thin-film transistors on boron nitride by Daowei He, Jingsi Qiao, Linglong Zhang,
Presentation transcript:

Niels Bohr Institute, Nano-Science Center, University of Copenhagen Isaac Newton Institute Workshop, Cambridge 27-30 September 2004 Field Effect Transistor Behaviour in Single Wall Carbon Nanotubes and Peapods Poul Erik Lindelof Niels Bohr Institute, Nano-Science Center, University of Copenhagen 18-Sep-18 Niels Bohr Institute

Field Effect Transistor Behaviour in Single Wall Carbon Nanotubes and Peapods Poul Erik Lindelof Niels Bohr Institute, Nano-Science Center, University of Copenhagen Henrik Ingerslev Jørgensen, PhD student Jonas Rahlf Hauptmann, PhD-student Thomas Sand Jespersen, PhD-student Kasper Grove-Rasmussen, Ph.D.-student (p.t. visiting NTT BRL, Japan) Ane Jensen, Dr Jesper Nygård, Dr & collaboration with Andrei Khlobystov, Oxford University 18-Sep-18 Niels Bohr Institute

Field Effect Transistor Behaviour in Single Wall Carbon Nanotubes and Peapods Outline of talk: Importance of contacts, Coulomb blockade, odd-even effects due to spin Zeeman splitting, ESR? Kondo effect Hybrids with GaAs Magnetic contacts Peapods, Periodic modulation Summary Notes may be nice 18-Sep-18 Niels Bohr Institute

3 carbon nanotubes (10,10) (15,0) (12,8) 18-Sep-18 (10,10) (15,0) (12,8) 18-Sep-18 Niels Bohr Institute

TEM of carbon nanotube robe A nanotube (or two?) TEM picture 20 nm 18-Sep-18 Niels Bohr Institute

Assignment by Raman spectra Thomas Sand Jespersen, MSc thesis 18-Sep-18 Niels Bohr Institute

Contact configuration although carbon atoms only! Contact configuration 2-point Electrical Resistance drain Au/Ti contacts Carbon nanotube Silicondioxide (300 nm) Highly doped silicon source gate 18-Sep-18 Niels Bohr Institute

Contacting a SWCNT 10µm 50µm 18-Sep-18 Niels Bohr Institute

SWCNT, metals or semiconductors 18-Sep-18 Niels Bohr Institute

3 examples of Contact resistances G300K = 0.3 e2/h G300K = 1.8 e2/h G300K = 3 e2/h It is ThreeTypesGVg.OPJ, originally made for the Kondo paper Devices: cdot, yin, metallicA T = 1K T = 100mK Theoretical maximum Gmax = 4 e2/h 18-Sep-18 Niels Bohr Institute

Metallic SWCNT, Temperature Dependence P.E. Lindelof, et al., Physica Scripta T02, 22 (2002) 18-Sep-18 Niels Bohr Institute

Odd-Even Additional energies D.H. Cobden and J. Nygård Phys,Rev,Lett. 89, 046803 (2002) 18-Sep-18 Niels Bohr Institute

Bias Spectroscopy, Zeeman splitting P.E. Lindelof , et al., Physica Scripta T02, 22 (2002) 18-Sep-18 Niels Bohr Institute

Wolfgang Pauli and Niels Bohr 1951, looking at a spinning object! 18-Sep-18 Niels Bohr Institute

Kondo bias spectroscopy Q E O D eV J. Nygård et al., Nature 408,342 (2000) 18-Sep-18 Niels Bohr Institute

Kondo temperature a b c J. Nygård et al., Nature 408, 342 (2000) G0 (e2/h) TK (K) a b c Fig 2 abc from modified Fig2FatCompilation.OPJ Fig 2mega meg56Fat1_v2cut.hdf, meg56Fat2_cut.hdf Fig 2 IV white_I-V_and_FWHMs.OPJ J. Nygård et al., Nature 408, 342 (2000) 18-Sep-18 Niels Bohr Institute

Carbon nanotube inside a MBE GaAlAs single crystall = + A. Jensen, J.Hauptmann, J, Nygård, J. Sadowski, P.E. Lindelof, Nano Letters (2004) 18-Sep-18 Niels Bohr Institute

Device fabrication MBE chamber MBE grown substrate: - n-doped GaAs - insulating superlattice barrier - amorphous As cap (protection) Dispersion of single-wall nanotubes from suspension, ambient conditions 18-Sep-18 Niels Bohr Institute

Device fabrication MBE chamber Epitaxal overgrowth with Ga0.95Mn0.05As by MBE at 250 C Result: nanotubes incorporated in GaAs sandwich Reloaded in the MBE chamber Desorption of As cap at 400 C, leaving the nanotubes on the clean GaAs crystal surface 18-Sep-18 Niels Bohr Institute

Mesa, Trench etch, SWCNTs Trench and SWCNT 18-Sep-18 Niels Bohr Institute

Device architecture a) b) 7 5 4 6 3 2 1 Au/Zn (Ga,Mn)As SWNT Cr/Au x100 2 AlAs 1 GaAs 18-Sep-18 Niels Bohr Institute

Configurations in various magnetic fields 18-Sep-18 Niels Bohr Institute

AFM scan of SWCNT between MBE grown GaAs electrodes Single wall carbon nanotube GaAs The trench is 0.5 µm wide 18-Sep-18 Niels Bohr Institute

G(Vg,B) for GaMnAs-SWCNT-GaMnAs 18-Sep-18 Niels Bohr Institute

G(Vsd,B,T) for GaMnAs-SWCNT-GaMnAs 18-Sep-18 Niels Bohr Institute

Magnetoresistance of GaMnAs-SWCNT-Au 18-Sep-18 Niels Bohr Institute

Juliere’s model G(++)~n(1,+)n(2,+)+n(1,-)n(2,-) P(1)=[n(1,+)-n(1,-)]/[n(1,+)+n(1,-)] DG/G=[G(++)-G(+ -)]/G(++) =2P(1)P(2)/[1+P(1)P(2)] >0 Negative magnetoresistance 18-Sep-18 Niels Bohr Institute

Tunnelling into two domains (Streda, unpublished) Tt T(1,+) T(2,-)= T(2,-) T(1,+)=pT1, T(1,-)=(1-p)T1, T(2,+)=T(2,-)=T2 G(p=1)=G(+)+G(-)=T1TtT2/[Tt(T1+T2)+2T1T2] G(p=1)-G(p=½)= -G(p=1)[T1/T2 + 2T1/Tt] magnetoresistance>0 18-Sep-18 Niels Bohr Institute

C-60@SWCNT Peapod K. Haldrup, A.N. Khlobystov et al. 18-Sep-18 Niels Bohr Institute

Raman spectra a) SWCNT b) SWCNT - through treatment c) C-60@SWCNT Peapod 18-Sep-18 Niels Bohr Institute

Peapod Conductance vs. Vg 18-Sep-18 Niels Bohr Institute

G(290) vs. power law exponent. C-60@SWCNT (O) & SWCNT (l) Haldrup, Khlobystov et al., To be published 18-Sep-18 Niels Bohr Institute

Nanometer periodic modulation of potential along SWCNT Thomas Sand Jespersen, Poul Erik Lindelof, unpublished 18-Sep-18 Niels Bohr Institute

MBE growth of SL with guiding structures. Cleaved Edge Overgrowth 18-Sep-18 Niels Bohr Institute

AFM picture of cleaved and etched surface 18-Sep-18 Niels Bohr Institute

AFM study of 30 nm period superlattice on the cleaved edge 18-Sep-18 Niels Bohr Institute

Carbon nanotube decoration of CEO SL surface 18-Sep-18 Niels Bohr Institute

SWCNT superlattice Raman spectrum. No data for the combination yet. 18-Sep-18 Niels Bohr Institute

Summary The contact resistance to metallic carbon nanotubes, Temperature dependence of electrical conductance Odd-even Coulomb blockade conductance peaks Zeeman splitting (g=2) Spin ½ co-tunneling (Kondo effect) GaAs-CNT hybrids, magnetic contacts Peapods, CEO periodic modulation 18-Sep-18 Niels Bohr Institute

Movie of ”spinning object” 18-Sep-18 Niels Bohr Institute

The ”spinning object” in action 18-Sep-18 Niels Bohr Institute