REDOX reakcije Elementi - elektron donori (kationi)

Slides:



Advertisements
Similar presentations
Oxidation-Reduction (Redox) Reactions
Advertisements

Announcements Exam #3 is THURSDAY! Chapter 13 – EDTA Titrations Chapter 23 – What is Chromatography Chapter 24 – Gas Chromatography* Chapter 25 – HPLC*
Regents Warm-Up Solid samples of the element phosphorus can be white, black, or red in color. The variations in color are due to different (1) atomic.
Outline:4/4/07 Today: Continue Chapter 19  Galvanic cells and  °  Nernst Equation (  and  G) è Pick up CAPA 18 & 19 - outside è Final exam in 4 weeks…
Aim: How to write half reactions
Balancing Chemical Equations A chemical reaction is a process by which one set of chemicals is transformed into a new set of chemicals. A chemical equation.
OXIDATION REDUCTION REACTIONS. Rules for Assigning Oxidation States The oxidation number corresponds to the number of electrons, e -, that an atom loses,
Electrochemistry Chapter 19.
Redox Reactions and Electrochemistry
Redox Reactions.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Oxidation-Reduction Reactions Chapter 4 and 18. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- _______ half-reaction (____ e - ) ______________________.
Wednesday, April 16, Return Quiz 2.Return Reading Analysis Go over homework 4. Notes Section Homework – Reading Analysis Section.
Redox Reactions & Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 16 Oxidation-Reduction Reactions. Objectives 16.1 Analyze the characteristics of an oxidation reduction reaction 16.1 Distinguish between oxidation.
Redox Reactions. REDOX-OXIDATION STATES Day One.
Electrochemistry Chapter 5. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Electrochemistry: Oxidation-Reduction Reactions Zn(s) + Cu +2 (aq)  Zn 2+ (aq) + Cu(s) loss of 2e - gaining to 2e - Zinc is oxidized - it goes up in.
Steps in Balancing Redox 1.Determine the oxidation number of all elements in the compounds 2. Identify which species have undergone oxidation and reduction.
Oxidation-Reduction (Redox) Reactions. Oxidation-Reduction Reactions  Electron transfer between ionic compounds, change in oxidation numbers  One compound.
Oxidation-Reduction (Redox) Reactions Eh, Ph, and the chemistry of natural waters.
Definition If oxidation occurs, then reduction must also occur Any chemical process in which elements undergo a change in oxidation number is a Redox.
Electrochemistry.
Ch. 20: Electrochemistry Lecture 1: Redox Review.
Electrochemical Reactions
Balancing Redox Equations:
Balancing Redox Equations:
Chemistry 200 Fundamental G Oxidation & Reduction.
Balancing Oxidation-Reduction Reactions in Acidic & Basic Solutions
Electrochemistry : Oxidation and Reduction
Oxidation-Reduction Chapter 20.
Electrochemistry Chapter 19
Oxidation-Reduction Reactions
Oxidation-Reduction (Redox) Reactions
Oxidation Numbers Elemental form of an atom = 0
Electrochemistry Chapter 20.
18.3 Balancing equations using Half-reactions in acidic or basic environments Read pages
Aim: How to write half reactions
Oxidation-Reduction Reactions
Chapter 20 - Electrochemistry
Dr. Aisha Moubaraki CHEM 202
ELECTROCHEMISTRY 9.1 and 9.2 To play the movies and simulations included, view the presentation in Slide Show Mode.
Redox Reactions and Electrochemistry
2.6 Redox Part 1. a. demonstrate an understanding of:
Electrochemistry Chapter 19
Redox Basics #68. Assign OX#
IB Topics 9 & 19 AP Chapters ; 17
Anomalije u prirodnim vodama
GEOCHEMICAL METHODS FOR THE DETERMINATION OF DIFFERENT METAL SPECIES
Drill: Calculate the solubility of PbSO4 Ksp = 2.0 x 10-14
2.6 Redox Part 1a. Balancing Redox Reactions (Half-equation method)
Redox Reactions.
Chapter 20 Electrochemistry
IB Topics 9 & 19 AP Chapters ; 17
Chapter 4 Oxidation Reduction Reactions
Recall the definition of standard cell potential understand the need for a reference electrode Calculate the standard cell potential.
Balancing Redox Reactions using the ½ Reaction Method
Electrochemistry Chapter 19
Electrochemistry Chapter 18.
IB Topics 9 & 19 AP Chapters ; 17
Electrochemistry Chapter 19
Chapter 20 Electrochemistry
January 2018 Electrochemistry Chemistry 30.
Displacement reactions
Day 2: Balancing Redox Reactions in Acidic or Basic solutions
Electrochemistry Chapter 19
Balancing Redox Reactions using the ½ Reaction Method
Electrochemistry Chapter 19
Presentation transcript:

REDOX reakcije Elementi - elektron donori (kationi) - elektron akceptori (anioni)

- elektron donor gubi elektron → oksidacija elektron akceptor prima elektrona → redukcija - broj e- otpuštenih u oksidaciji = broj e- primljenih u redukciji el. donor se oksidira (redukcijsko sredstvo = reducens) el. akceptor se reducira (oksidacijsko sredstvo = oksidans)

OKSIDACIJSKI BROJ Pravila za određivanje oksidacijskog broja: Oksidacijski broj atoma u elementarnom stanju jednak je nuli. Oksidacijski broj vodika u spojevima iznosi +1. Izuzetak su hidridi metala (npr. LiH), u kojima vodik ima oksidacijski broj – 1. Oksidacijski broj kisika u spojevima iznosi – 2. Izuzetak su peroksidi (spojevi koji sadrže peroksidni (npr. H2O2), u kojima kisik ima oksidacijski broj – 1 i superoksidi (npr. KO2) u kojima kisik ima oksidacijski broj –1/2. Kada je vezan na fluor, kisik ima pozitivan stupanj oksidacije (npr. u F2O oksidacijski broj kisika iznosi + 2). Oksidacijski broj alkalnih metala iznosi +1, a zemnoalkalnih metala +2. Oksidacijski broj fluora uvijek je -1, a oksidacijski broj ostalih halogenih elemenata uglavnom je -1. Oksidacijski brojevi dodjeljuju se atomima u molekuli ili ionskom kompleksu na način da je suma oksidacijski brojeva u neutralnoj molekuli jednaka nuli. Odredi oksidacijski broj mangana u slijedećim spojevima: KMnO4; MnO2, Mn2O3

Npr. 2Fe  2Fe3+ + 6e- (oksidacija) 3Cl20 + 6e-  6Cl- (redukcija) Polureakcije Redoks jednadžbe rješavaju se pomoću parcijalnih elektronskih jednadžbi: – odvojeno se pišu polureakcije - reakcije oksidacije i reakcije redukcije s odgovarajućim brojem prenesenih elektrona – ukoliko broj elektrona u jednadžbama polureakcija nije jednak, parcijalne jednadžbe množe se odgovarajućim cijelim brojem kako bi se dobio najmanji zajednički višekratnik Npr. 2Fe  2Fe3+ + 6e- (oksidacija) 3Cl20 + 6e-  6Cl- (redukcija) 2Fe + 3Cl2  2Fe3+ + 6Cl- (redox) 4FeS2 + 44H2O  4Fe(OH)3 + 8SO42- + 76H+ + 68e- (oksidacija) 17O2 + 68H+ + 68e-  34H2O(l) (redukcija) 4FeS2 + 17O2 +10H2O  4Fe(OH)3 + 8SO42- + 8H+ (redox) Overall redox reactions always can be broken down into two half reactions that explicitly show the transfer of electrons. One of the half reactions will have electrons on the right-hand side, and therefore it represents the oxidation half of the overall reaction. The other half reaction will have electrons on the left-hand side, representing the reduction half of the overall reaction. When the two half reactions are summed together, the electrons will completely cancel, and the overall redox reaction is recovered. Because free electrons do not exist in aqueous solution, half reactions do not correspond to any real reaction. However, it is often useful to write these half reactions because they help us see more clearly what is being oxidized and what is being reduced. Also, later on we will see that half reactions are useful in defining measures of redox potential (i.e., pe and Eh) and in the construction of Eh-pH diagrams. In the following two slides, the two other overall redox reactions that we balanced are broken down in terms of their half reactions.

Elektrokemijska ćelija Elektrokemijski niz Elektrokemijska ćelija Npr. Zn + Fe2+ → Zn2+ + Fe DrG0 = -16,29 kcal/mol Fe + Cu2+ → Fe2+ + Cu DrG0 = -34,51 kcal/mol Cu + 2Ag+ → Cu2+ + 2Ag DrG0 = -21,21 kcal/mol katoda Zn2+ + SO42- Cu2+ + SO42- SO42- polupropusna membrana Zn → Zn2+ + 2e- Cu2+ + 2e- → Cu Zn + Cu2+ → Zn2+ + Cu Zn - najjači reducens u navedenim reakcijama Ag - najslabiji reducens (najjači oksidans) u navedenim reakcijama DrG0 = -50,8 kcal/mol

veza između DrG0 i elektromotorne sile (E) REDOX reakcije glasi: Elektromotorna sila (E) - razlika potencijala između dviju različitih elektroda koje su uronjene u isti elektrolit ili između dva polučlanka spojenih elektrolitnim mostom. veza između DrG0 i elektromotorne sile (E) REDOX reakcije glasi: DrG0 = nFE DrG0 - promjena Gibb. energ. reakcije n - broj elektrona izmijenjen u reakciji F - Faradayeva konst. (96 489 C/mol; 23,06 kcal/(V×g) E - elektromotorna sila Standardni uvjeti → Standardna elektromotorna sila - ako se vratimo na reakciju: Zn + Cu2+ → Zn2+ + Cu DrG0 = -50,8 kcal/mol

Elektrokemijski niz - kemijski elementi složeni po svom standardnom elektrodnom potencijalu Dogovorno je uzeto da je potencijal standardne vodikove elektrode jednak nuli: H+ (aq) + e- → ½ H2 (g) E0 = 0,0 V Gf0(H+) = Gf0(e-) = 0,00 Elektrodni potencijal po definiciji je redukcijski potencijal. Što je negativniji standardni elektrodni potencijal to je metal elektropozitivniji, i može reducirati elektronegativnije elemente (elemente ispod sebe u elektrokemijskom nizu).     

Elektromotorna sila elektrokemijske ćelije R = 1,987×10-3 kcal/K×mol T = 298,15 K F = 23,06 kcal/V Ravnoteža E = 0,0 V Nernstova jednadžba Reakcija: tijek reakcije Zn + Cu2+ → Zn2+ + Cu E0 = -1,10 V Stand. stanje E = -1,10 V

Eh - elektromotorna sila razvijena između neke elektrode (bez obzira na stanje) i H-elektrode u standardnom stanju Npr. oksidacija Fe2+ u Fe3+ Fe2+ → Fe3+ + e- H+ + e- → ½ H2 Fe2+ + H+ → Fe3+ + ½ H2 DrG0 = [Gf0(Fe3+) + ½ Gf0(H2)] - [Gf0(H+) + Gf0(Fe2+)] Gf0(H2) = 0 Gf0(H+) = 0 Eh - karakteristika sredine, vrijednost Eh neke sredine ukazuje na njenu sposobnost da bude elektron donor ili elektron akceptor s obzirom - omjer [Fe3+]/[Fe2+] ovisi samo o Eh sredine

H2O (l) ↔ ½ O2 (g) + H2 (g) H2O (l) ↔ ½ O2 + 2H+ + 2e- Stabilnost vode u Eh - pH dijagramu H2O (l) ↔ ½ O2 (g) + H2 (g) H2O (l) ↔ ½ O2 + 2H+ + 2e- E0 = +1,23 V DrG0 = [2Gf0(H+) + ½ Gf0(O2) + 2Gf0(e-)] - [Gf0(H2O (l))] DrG0 = +58,687 kcal/mol -pH za pO2 = 1 atm Eh = 1,23 - 0,059 pH

H+ + e-  ½ H2(g) za pH2 = 1 atm Eh = - 0,059 pH Eh = 1,23 - 0,059 pH

Raspon Eh-pH vrijednosti u geološkim okolišima (Baas-Becking et al. (1960) Jour. Geol. 68: 243-284)

DrGo = DrGo (Fe3+) - DrGo (Fe2+) Stabilnost Fe-vrsta u Eh-pH dijagramu Fe-H2O sustav Fe2+/Fe3+ granica Fe2+ (aq) → Fe3+ (aq) + e – DrGo = DrGo (Fe3+) - DrGo (Fe2+) = ( -16,7 kJ/mol) - (-90,0 kJ/mol ) = 73,3 kJ/mol [Fe3+] = [Fe2+]

1,5 1 Fe3+ 0,5 Fe(OH)3 Eh / V Fe2+ Fe(OH)2 -0,5 -1 2 4 6 8 10 12 14 pH

Eh-pH dijagram za Fe-vrste (okside, sulfide, karbonate) pri 25°C i 1 atm. Ukupni otopljeni sumpor = 10-6, ukupni otopljeni karbonati = 100 Garrels & Christ(1965): Solutions, Minerals, and Equilibria.

Trošenje halkopirita (CuFeS2), Sibai, Rusija Limonit (Fe2O3×nH2O) Malahit (Cu2CO3(OH)2) Vapnenac