Please get out your completed 8

Slides:



Advertisements
Similar presentations
SOLUTION EXAMPLE 1 A linear system with no solution Show that the linear system has no solution. 3x + 2y = 10 Equation 1 3x + 2y = 2 Equation 2 Graph the.
Advertisements

Please CLOSE YOUR LAPTOPS, and turn off and put away your cell phones, and get out your note-taking materials. Today’s Gateway Test will be given during.
Today’s quiz on 8.2 A Graphing Worksheet 1 will be given at the end of class. You will have 12 minutes to complete this quiz, which will consist of one.
Today’s quiz on 8.2 B Graphing Worksheet 2 will be given at the end of class. You will have 12 minutes to complete this quiz, which will consist of one.
Solving Systems of Linear Equations by Graphing
Please open your laptops, log in to the MyMathLab course web site, and open Daily Quiz 16. IMPORTANT NOTE: If you have time left out of your five minutes.
Please open your laptops, log in to the MyMathLab course web site, and open Daily Quiz 18. You will have 10 minutes for today’s quiz. The second problem.
Please close your laptops and turn off and put away your cell phones, and get out your note-taking materials. Today’s daily homework quiz will be given.
Please open your laptops, log in to the MyMathLab course web site, and open Quiz 4.1/4.2. IMPORTANT NOTE: If you have time left after you finish this quiz,
Please close your laptops and turn off and put away your cell phones, and get out your note-taking materials. Today’s daily 5-minute quiz will be given.
Review for Final Exam Systems of Equations.
Grade Scale Test 1 Results: Average class score after partial credit: __________ Commonly missed questions: #_________________ If you got less than 70%
Solving Systems of Linear Equations and Inequalities
Copyright © 2011 Pearson Education, Inc. Publishing as Prentice Hall. Chapter 11 Systems of Equations.
Warm Up Graph the lines on the same grid and identify the point where they meet. 1. y=2x-2 2. y=x+1.
Copyright © 2011 Pearson Education, Inc. Publishing as Prentice Hall. Chapter 14 Systems of Equations.
5-3 Equations as Relations
Please get out your completed 8.2B Graphing Worksheet 2 and pass it to the center aisle to be collected by the TA.
Please CLOSE YOUR LAPTOPS, and turn off and put away your cell phones, and get out your note- taking materials.
 What is the slope of the line that passes through the following points. 1.(-2, 5) (1, 4)  Identify the slope and y -intercept of each equation. 2.y.
Using Substitution – Solve the system of linear equations. 1.
Copyright © 2011 Pearson Education, Inc. Publishing as Prentice Hall.
Please close your laptops and turn off and put away your cell phones, and get out your note-taking materials.
Systems of Linear Equations A system of linear equations consists of two or more linear equations. We will focus on only two equations at a time. The solution.
Chapter 3 Systems of Equations. Solving Systems of Linear Equations by Graphing.
Please CLOSE YOUR LAPTOPS, and turn off and put away your cell phones, and get out your note- taking materials.
Systems of Equations.
CLOSE Please YOUR LAPTOPS, and get out your note-taking materials.
Systems of Linear Equations
EXAMPLE Determine whether the given point is a solution of the following system. point: (– 3, 1) system: x – y = – 4 2x + 10y = 4 Plug.
CLOSE Please YOUR LAPTOPS, and get out your note-taking materials.
Please CLOSE YOUR LAPTOPS,
CLOSE Please YOUR LAPTOPS, and get out your note-taking materials.
ALGEBRA 1 CHAPTER 7 LESSON 5 SOLVE SPECIAL TYPES OF LINEAR SYSTEMS.
Starter Graph the equation & inequalities: y = 2x + 1 Y < 2x + 1
Solving Equations with Variables on Both Sides
CLOSE Please YOUR LAPTOPS, and get out your note-taking materials.
The student will be able to:
Please close your laptops
Chapter 7 – Linear Systems
Solving Systems of Linear Equations and Inequalities
Systems of Linear Equations
Systems of Linear Equations
CLOSE Please YOUR LAPTOPS, and get out your note-taking materials.
Chapter 4 Section 1.
Break even or intersection
Systems of Linear Equations
Systems of Linear Equations
The student will be able to:
Bellwork 1/27 Solve the following by:
Do Now 1/18/12 In your notebook, explain how you know if two equations contain one solution, no solutions, or infinitely many solutions. Provide an example.
The student will be able to:
Graph the equation..
Systems of Linear Equations
infinitely many solutions
Lesson Objectives: I will be able to …
Chapter 4 – Linear Systems
Warm up: Solve the given system by elimination
Chapter 8 Systems of Equations 8.1 Solve Systems by Graphing
The student will be able to:
Systems of Linear Equations
The student will be able to:
Graphing Systems of Equations
3 Chapter Chapter 2 Graphing.
Linear Systems Systems of Linear Equations
The student will be able to:
The student will be able to:
Chapter 3.1 Solving Linear Systems by Graphing
Lesson 0 – 8 Systems of Linear Equations
4 Chapter Chapter 2 Solving Systems of Linear Equations.
Presentation transcript:

Please get out your completed 8 Please get out your completed 8.2A Graphing Worksheet 1 and pass it to the center aisle to be collected by the TA.

CLOSE Please YOUR LAPTOPS, and get out your note-taking materials. and turn off and put away your cell phones, and get out your note-taking materials.

Section 4.1 Solving Systems of Equations in Two Variables by Graphing A system of linear equations consists of two or more linear equations. This section focuses on only two equations at a time. The solution of a system of linear equations in two variables is any ordered pair that solves both of the linear equations.

What does this look like on a graph? The SOLUTION to a system of two linear equations is the intersection (if any) of the two lines. There are only three possible solution scenarios: The lines intersect in a single point (so the answer is one ordered pair). The lines don’t intersect at all, i.e. they are parallel (so the answer is “no solution”.) The two lines are identical, i.e. coincident, so there are infinitely many solutions (all of the points that fall on that line.)

To be a SOLUTION of a system of equations, an ordered pair must result in true statements for BOTH equations when the values for x & y are plugged into them. If either one (or both) gives a false statement, the ordered pair is NOT a solution of the system.

Plug the values into the equations. Example Determine whether the given point is a solution of the following system. point: (-3, 1) system: x – y = -4 and 2x + 10y = 4 Plug the values into the equations. First equation: -3 – 1 = -4 true Second equation: 2(-3) + 10(1) = -6 + 10 = 4 true Since the point (-3, 1) produces a true statement in both equations, it is a solution.

Plug the values into the equations Example Determine whether the given point is a solution of the following system point: (4, 2) system: 2x – 5y = -2 and 3x + 4y = 4 Plug the values into the equations First equation: 2•4 - 5•2 = 8 – 10 = -2 true Second equation: 3•4 + 4•2 = 12 + 8 = 20  4 false Since the point (4, 2) produces a true statement in only one equation, it is NOT a solution.

Problem from today’s homework: (try this one in your notebook) x = 5 and y = 3 works in the first equation, but not in the second one.

Since a solution of a system of equations is a solution common to both equations, it would also be a point common to the graphs of both equations. One way to find the solution of a system of 2 linear equations is to graph the equations and see where the lines intersect. You can use any of the techniques from Chapter 3 to graph the two lines (e.g. solving each equation for y and using the slope and intercept, or making a table of x- and y-values for each equation and plotting the ordered pairs.)

Graphing is the first of three methods for solving systems of equations that we will be studying in this chapter. The other two methods we will be using are: Substitution method (Section 4.2) Addition or elimination method (Section 4.3)

Note: Graph Paper Click on the “Announcements” button to find a site that allows you to print free graph paper. If you want to be able to draw accurate graphs but you don't want to buy a whole pack of graph paper for one assignment, go to this web site and print a couple pages of graph paper for free. (You don’t have to do this – graphing by hand on plain paper is fine, but sometimes it’s easier to see the solutions if you can plot your points carefully on real graph paper instead of a hand-drawn graph grid.) http://www.printfree.com/Office_forms/GraphPaper2.htm

Example: Solve the following system of equations by graphing: 2x – y = 6 and x + 3y = 10 First, graph 2x – y = 6. Solving for y gives y = 2x – 6. Plot the y-intercept of -6, then use the slope of 2 to go up two, over one. (4, 2) (1, 3) Second, graph x + 3y = 10. Solving for y gives y = -1/3x + 10/3. The y-intercept is a fraction, so let x = 1; then y = -1/3 + 10/3 = 9/ 3 = 3. Plot (1,3), then use the slope of -1/3 to go down one, over three. (1, -4), (0, -6) The lines APPEAR to intersect at (4, 2).

The point (4, 2) checks, so it is the solution of the system. Example (cont.) Although the solution to the system of equations appears to be (4, 2), you still need to check the answer by substituting x = 4 and y = 2 into the two equations. First equation, 2(4) – 2 = 8 – 2 = 6 true Second equation, 4 + 3(2) = 4 + 6 = 10 true The point (4, 2) checks, so it is the solution of the system.

Problem from today’s homework: (try this one in your notebook) Solution: Graph the 2 lines. They appear to intersect at (3,3) Now check x = 3, y = 3 back into BOTH equations to make sure they both give true statements.

Solve the following system of equations by graphing. Example Solve the following system of equations by graphing. -x + 3y = 6 and 3x – 9y = 9 x y (3,3) First, graph -x + 3y = 6. Solving for y gives y = 1/3x + 2. Plot the y-intercept of 2, then use the slope of 1/3 to go up one, over three. (0, 2) (3, 0) (0, -1) Next, graph 3x - 9y = 9. Solving for y gives y = 1/3x - 1. Plot the y-intercept of -1, then use the slope of 1/3 to go up one, over three. The lines APPEAR to be parallel.

Example (cont.) Although the lines appear to be parallel, you still need to check that they have the same slope. You can do this by solving both equations for y, as we did on the previous slide. Both lines have a slope of ; since they have different y-intercepts they are parallel and do not intersect. Hence, there is no solution to the system.

Solve the following system of equations by graphing. Example x y Solve the following system of equations by graphing. x = 3y – 1 and 2x – 6y = -2 (5, 2) (-1, 0) (2, 1) (-4, -1) (7, -2) First, graph x = 3y – 1. Second, graph 2x – 6y = -2. The lines APPEAR to be identical.

Example (cont.) Although the lines appear to be identical, you still need to check that they are identical equations. You can do this by solving for y. First equation, x = 3y – 1 3y = x + 1 (add 1 to both sides) y = x + (divide both sides by 3) Second equation, 2x – 6y = -2 -6y = -2x – 2 (subtract 2x from both sides) y = x + (divide both sides by -6) The two equations are identical, so the graphs must be identical. There are an infinite number of solutions to the system (all the points on the line y = 1/3 x + 1/3).

Visit the MathTLC For homework help! HW 4.1 on today’s material is due at the start of the next class session. Visit the MathTLC For homework help!