Volume 96, Issue 1, Pages (January 2009)

Slides:



Advertisements
Similar presentations
Pressure and Temperature Dependence of Growth and Morphology of Escherichia coli: Experiments and Stochastic Model  Pradeep Kumar, Albert Libchaber  Biophysical.
Advertisements

Volume 98, Issue 3, Pages (February 2010)
Wenjun Zheng, Han Wen, Gary J. Iacobucci, Gabriela K. Popescu 
Probing Membrane Order and Topography in Supported Lipid Bilayers by Combined Polarized Total Internal Reflection Fluorescence-Atomic Force Microscopy 
Rapid Assembly of a Multimeric Membrane Protein Pore
Volume 112, Issue 7, Pages (April 2017)
Stephen R. Norris, Marcos F. Núñez, Kristen J. Verhey 
Volume 113, Issue 12, Pages (December 2017)
Volume 99, Issue 9, Pages (November 2010)
Volume 111, Issue 7, Pages (October 2016)
Lara Scharrel, Rui Ma, René Schneider, Frank Jülicher, Stefan Diez 
Dynamics of the Serine Chemoreceptor in the Escherichia coli Inner Membrane: A High- Speed Single-Molecule Tracking Study  Dongmyung Oh, Yang Yu, Hochan.
Joseph M. Johnson, William J. Betz  Biophysical Journal 
Volume 104, Issue 2, Pages (January 2013)
Fuqing Wu, David J. Menn, Xiao Wang  Chemistry & Biology 
Linda Balabanian, Christopher L. Berger, Adam G. Hendricks 
Volume 96, Issue 9, Pages (May 2009)
Volume 103, Issue 12, Pages (December 2012)
Volume 98, Issue 11, Pages (June 2010)
Emily I. Bartle, Tara M. Urner, Siddharth S. Raju, Alexa L. Mattheyses 
Volume 114, Issue 5, Pages (March 2018)
Influence of Protein Scaffold on Side-Chain Transfer Free Energies
Volume 113, Issue 10, Pages (November 2017)
V. Vetri, G. Ossato, V. Militello, M.A. Digman, M. Leone, E. Gratton 
Abir M. Kabbani, Christopher V. Kelly  Biophysical Journal 
Volume 94, Issue 7, Pages (April 2008)
Quantitative Imaging of Transcription in Living Drosophila Embryos Links Polymerase Activity to Patterning  Hernan G. Garcia, Mikhail Tikhonov, Albert.
Kinesin Moving through the Spotlight: Single-Motor Fluorescence Microscopy with Submillisecond Time Resolution  Sander Verbrugge, Lukas C. Kapitein, Erwin.
Cell Surface Topography Is a Regulator of Molecular Interactions during Chemokine- Induced Neutrophil Spreading  Elena. B. Lomakina, Graham Marsh, Richard E.
Calmodulin Modulates Initiation but Not Termination of Spontaneous Ca2+ Sparks in Frog Skeletal Muscle  George G. Rodney, Martin F. Schneider  Biophysical.
Janin Glaenzer, Martin F. Peter, Gavin H. Thomas, Gregor Hagelueken 
Volume 109, Issue 11, Pages (December 2015)
Volume 111, Issue 12, Pages (December 2016)
Samuel T. Hess, Watt W. Webb  Biophysical Journal 
Volume 7, Issue 7, Pages (July 2000)
Volume 96, Issue 7, Pages (April 2009)
Volume 108, Issue 1, Pages 5-9 (January 2015)
Volume 99, Issue 8, Pages (October 2010)
Rapid Assembly of a Multimeric Membrane Protein Pore
Volume 96, Issue 5, Pages (March 2009)
Rían W. Manville, Daniel L. Neverisky, Geoffrey W. Abbott 
Volume 109, Issue 3, Pages (August 2015)
Volume 95, Issue 11, Pages (December 2008)
Michael C. Puljung, William N. Zagotta  Biophysical Journal 
Volume 108, Issue 11, Pages (June 2015)
Site-Directed Spin-Labeling Study of the Light-Harvesting Complex CP29
Protein Diffusion in the Periplasm of E. coli under Osmotic Stress
Structural Flexibility of CaV1. 2 and CaV2
Velocity-Dependent Mechanical Unfolding of Bacteriorhodopsin Is Governed by a Dynamic Interaction Network  Christian Kappel, Helmut Grubmüller  Biophysical.
Blocking of Single α-Hemolysin Pore by Rhodamine Derivatives
Volume 103, Issue 10, Pages (November 2012)
Volume 114, Issue 3, Pages (February 2018)
Volume 113, Issue 12, Pages (December 2017)
Arisa Uemura, Thuc-Nghi Nguyen, Amanda N. Steele, Soichiro Yamada 
Long-Range Nonanomalous Diffusion of Quantum Dot-Labeled Aquaporin-1 Water Channels in the Cell Plasma Membrane  Jonathan M. Crane, A.S. Verkman  Biophysical.
Volume 25, Issue 8, Pages e3 (August 2017)
Quantification of Fluorophore Copy Number from Intrinsic Fluctuations during Fluorescence Photobleaching  Chitra R. Nayak, Andrew D. Rutenberg  Biophysical.
Volume 104, Issue 2, Pages (January 2013)
Volume 106, Issue 1, Pages (January 2014)
Pamela M. England, Yinong Zhang, Dennis A. Dougherty, Henry A. Lester 
Volume 111, Issue 7, Pages (October 2016)
Emily I. Bartle, Tara M. Urner, Siddharth S. Raju, Alexa L. Mattheyses 
Christina Ketchum, Heather Miller, Wenxia Song, Arpita Upadhyaya 
Volume 107, Issue 3, Pages (August 2014)
Use Dependence of Heat Sensitivity of Vanilloid Receptor TRPV2
Antonella Gradogna, Michael Pusch  Biophysical Journal 
Yufang Wang, Ling Guo, Ido Golding, Edward C. Cox, N.P. Ong 
Volume 108, Issue 8, Pages (April 2015)
George D. Dickinson, Ian Parker  Biophysical Journal 
Volume 98, Issue 3, Pages (February 2010)
Presentation transcript:

Volume 96, Issue 1, Pages 226-237 (January 2009) Single-Molecule Imaging of a Fluorescent Unnatural Amino Acid Incorporated Into Nicotinic Receptors  Rigo Pantoja, Erik A. Rodriguez, Mohammed I. Dibas, Dennis A. Dougherty, Henry A. Lester  Biophysical Journal  Volume 96, Issue 1, Pages 226-237 (January 2009) DOI: 10.1016/j.bpj.2008.09.034 Copyright © 2009 Biophysical Society Terms and Conditions

Figure 1 Structure of molecules studied in these experiments. (A) Crystal structure of GFP, Protein Data Bank accession code 1EMA. (B) Structure of Lys(BODIPYFL): same scale as GFP (bottom), and magnified (top). (C) Top view of Torpedo nAChR cryo-EM structure, Protein Data Bank accession code 2BG9. Green residue with red-dashed circle indicates nAChR β19′ site. (D) Side view of nAChR β-subunit, with 19′ site indicated in green. (E) Structure of BODIPYFL-C3-MTS. Biophysical Journal 2009 96, 226-237DOI: (10.1016/j.bpj.2008.09.034) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 2 Electrophysiological properties of oocytes expressing nAChR β19′Lys(BODIPYFL). (A) Representative ACh-induced currents during a dose-response series, in an oocyte expressing nAChR β19′Lys(BODIPYFL) receptor. Each ACh application lasted 5 s. (B) Dose-response curve for nAChR β19′Lys(BODIPYFL) (open circles), compared with WT data (solid circles). Error bars are mean ± SE (n = 5 oocytes). Smooth curves represent a fitted single-component dose-response relationship for nAChR β19′Lys(BODIPYFL) (EC50, 38 ± 2 μM; Hill coefficient, 1.1 ± 0.05) and WT (EC50, 60 ± 4 μM; Hill coefficient, 1.3 ± 0.01). (C) Average current induced by 1- mM ACh application in oocytes injected with 25 ng of α/β19′GGGU/γ/δ mRNA + 25 ng YFaFSACCC-Lys(BODIPYFL) (mRNA + tRNA-fUAA), 25 ng α/β19′GGGU/γ/δ mRNA only (mRNA), and 25 ng α/β19′GGGU/γ/δ mRNA + 25 ng 74mer-YFaFSACCC (mRNA + 74mer-tRNA). Biophysical Journal 2009 96, 226-237DOI: (10.1016/j.bpj.2008.09.034) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 3 TIRF microscopy images of a representative oocyte expressing nAChR β19′Lys(BODIPYFL). (A) An oocyte injected with nAChR α/β19′GGGU/γ/δ mRNA and YFaFSACCC-Lys(BODIPYFL). Scale bar represents 12 μm. The counts calibration bar with linear dynamic range is selected for best display. The square is a representative punctum selected for presentation. (B) Representative punctum in 15 × 15 pixel region corresponding to square in A. Scale bar represents 10 pixels, or 0.74 μm. (C) Two-dimensional Gaussian fit of punctum in B. (D) Single-molecule time-series photobleaching trace from selected punctum. Biophysical Journal 2009 96, 226-237DOI: (10.1016/j.bpj.2008.09.034) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 4 TIRF microscopy images of representative oocyte expressing nAChR γeGFP. (A) An oocyte injected with nAChR γeGFP. Scale bar represents 12 μm. The counts calibration bar with linear dynamic range is selected for best display. (B) Representative single-molecule time-series trace from selected punctum. Biophysical Journal 2009 96, 226-237DOI: (10.1016/j.bpj.2008.09.034) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 5 Histograms of puncta amplitudes from oocytes expressing either nAChR γeGFP (black bars) or nAChR β19′Lys(BODIPYFL) (gray bars), using similar imaging conditions. The nAChR β19′Lys(BODIPYFL) and nAChR γeGFP displayed log-normal distributions with a peak value at 1064 counts and a log SD of 0.43 (n = 3 oocytes, 135 puncta), and a peak value at 501 counts and a log SD of 0.51 (n = 2 oocytes, 78 puncta), respectively. Biophysical Journal 2009 96, 226-237DOI: (10.1016/j.bpj.2008.09.034) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 6 TIRF microscopy of oocyte expressing WT nAChR labeled with αBtxAlexa488. (A) WT nAChRs labeled with αBtxAlexa488. Representative puncta in boxed squares correspond to one and two photobleaching steps. Scale bar equals 12 μm. (B) Representative traces, with one and two photobleaching steps. Dashed guidelines indicate fluorescence levels. Biophysical Journal 2009 96, 226-237DOI: (10.1016/j.bpj.2008.09.034) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 7 TIRF microscopy of oocyte expressing nAChR γeGFP labeled with αBtxAlexa488. (A) nAChR γeGFP labeled with αBtxAlexa488. Puncta in boxes are diffraction-limited spots with 1, 2, and 3 photobleaching steps. Scale bar represents 12 μm. The intensity calibration bar with linear dynamic range is selected for best display. (B) Representative traces with 1, 2, and 3 photobleaching steps. Dashed guidelines indicate fluorescence levels. Biophysical Journal 2009 96, 226-237DOI: (10.1016/j.bpj.2008.09.034) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 8 TIRF microscopy of an oocyte expressing nAChR β19′Lys(BODIPYFL) labeled with αBtxAlexa488. (A) TIRF image of an oocyte expressing nAChR β19′Lys(BODIPYFL) receptors labeled with αBtxAlexa488. Puncta in boxes are diffraction-limited spots with 1, 2, and 3 photobleaching steps. Scale bar represents 12 μm. The intensity calibration bar with linear dynamic range selected for best display. (B) Representative traces with 1, 2, and 3 photobleaching steps, corresponding to puncta in squares. Dashed guidelines indicate fluorescence levels. Biophysical Journal 2009 96, 226-237DOI: (10.1016/j.bpj.2008.09.034) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 9 Summary of photobleaching steps and puncta-density statistics. (A) Percent of puncta versus number of photobleaching steps measured for oocytes with surface-expressed WT nAChRs, nAChR β19′Lys(BODIPYFL), and nAChR γeGFP labeled with αBtxAlexa488, and imaged under similar conditions. Error bars report the mean ± SE. (B) Average puncta density for oocytes expressing nAChR β19′Lys(BODIPYFL) (β19′Lys(BODIPYFL)), nAChR γeGFP (γeGFP), WT nAChR (WT), YFaFSACCC-Lys(BODIPYFL) (tRNA-fUAA), and uninjected (UI) oocytes with and without αBtxAlexa488 labeling. The puncta density predicted from current density is plotted for nAChR β19′Lys(BODIPYFL), nAChR γeGFP, and WT nAChR oocytes. Dashed line represents correspondence between puncta density of 0.019/μm2 and expected current of 1 μA. Error bars report mean ± SE. Biophysical Journal 2009 96, 226-237DOI: (10.1016/j.bpj.2008.09.034) Copyright © 2009 Biophysical Society Terms and Conditions