Chapter 15 Advanced Circuit Analysis

Slides:



Advertisements
Similar presentations
Signal and System I The inverse z-transform Any path in the ROC to make the integral converge Example ROC |z|>1/3.
Advertisements

Chapter 12 Three Phase Circuits
Eeng Chapter 2 Orthogonal Representation, Fourier Series and Power Spectra  Orthogonal Series Representation of Signals and Noise Orthogonal Functions.
Lecture #07 Z-Transform meiling chen signals & systems.
Chapter 12 Three Phase Circuits
DEPARTMENT OF MATHEMATI CS [ YEAR OF ESTABLISHMENT – 1997 ] DEPARTMENT OF MATHEMATICS, CVRCE.
Chapter 11 AC Power Analysis
Laplace Transform (1) Hany Ferdinando Dept. of Electrical Eng. Petra Christian University.
1 EENG224 Eeng224 Circuit II, Course Information  Instructor: Huseyin Bilgekul, Room No: EE 207, Office Tel:  Office Hours: Monday ,
Chapter 14 Filter Circuits
Chapter 5 Z Transform. 2/45  Z transform –Representation, analysis, and design of discrete signal –Similar to Laplace transform –Conversion of digital.
Chapter 5: Fourier Transform.
Eeng Chapter4 Bandpass Signalling  Definitions  Complex Envelope Representation  Representation of Modulated Signals  Spectrum of Bandpass Signals.
1 EE571 PART 2 Probability and Random Variables Huseyin Bilgekul Eeng571 Probability and astochastic Processes Department of Electrical and Electronic.
Chapter 6 Bandpass Random Processes
Alexander-Sadiku Fundamentals of Electric Circuits
Eeng360 1 Chapter 2 Fourier Transform and Spectra Topics:  Fourier transform (FT) of a waveform  Properties of Fourier Transforms  Parseval’s Theorem.
Eeng Chapter4 Transmitters and Receivers  Generalized Transmitters  AM PM Generation  Inphase and Quadrature Generation  Superheterodyne Receiver.
1 Eeng224 Chapter 10 Sinusoidal Steady State Analysis Huseyin Bilgekul Eeng224 Circuit Theory II Department of Electrical and Electronic Engineering Eastern.
1 Eeng 224 Chapter 10 Sinusoidal Steady State Analysis Huseyin Bilgekul Eeng224 Circuit Theory II Department of Electrical and Electronic Engineering Eastern.
1 Eeng 224 Chapter 14 Resonance Circuits Huseyin Bilgekul Eeng 224 Circuit Theory II Department of Electrical and Electronic Engineering Eastern Mediterranean.
1 Eeng 224 Chapter 14 Frequency Response Huseyin Bilgekul Eeng 224 Circuit Theory II Department of Electrical and Electronic Engineering Eastern Mediterranean.
1 Eeng 224 Chapter 11 AC Power Analysis Huseyin Bilgekul Eeng224 Circuit Theory II Department of Electrical and Electronic Engineering Eastern Mediterranean.
Eeng360 1 Chapter 2 Linear Systems Topics:  Review of Linear Systems Linear Time-Invariant Systems Impulse Response Transfer Functions Distortionless.
1 Eeng224 Chapter 9 Sinusoids and Phasors  Delta-to-wye and wye-to-delta conversions  Phase Sifters.  AC Bridges.  Problem Solutions Huseyin Bilgekul.
Eeng Chapter4 Bandpass Signalling  Bandpass Filtering and Linear Distortion  Bandpass Sampling Theorem  Bandpass Dimensionality Theorem  Amplifiers.
1 Eeng 224 Chapter 14 Frequency Response Huseyin Bilgekul Eeng 224 Circuit Theory II Department of Electrical and Electronic Engineering Eastern Mediterranean.
Chapter 13 Magnetically Coupled Circuits
Chapter 9 Sinusoids and Phasors
Eeng Chapter 2 Discrete Fourier Transform (DFT) Topics:  Discrete Fourier Transform. Using the DFT to Compute the Continuous Fourier Transform.
1 Eeng 224 Chapter 13 Transformer Applications Huseyin Bilgekul Eeng224 Circuit Theory II Department of Electrical and Electronic Engineering Eastern Mediterranean.
Fourier Transform and Spectra
Chapter 2 Ideal Sampling and Nyquist Theorem
Fourier Transform and Spectra
1 EENG224 Chapter 9 Complex Numbers and Phasors Huseyin Bilgekul EENG224 Circuit Theory II Department of Electrical and Electronic Engineering Eastern.
Chapter 13 Ideal Transformers
1 Eeng 224 Chapter 12 Three Phase Circuits Huseyin Bilgekul Eeng224 Circuit Theory II Department of Electrical and Electronic Engineering Eastern Mediterranean.
Eeng Chapter4 Bandpass Signalling  Bandpass Filtering and Linear Distortion  Bandpass Sampling Theorem  Bandpass Dimensionality Theorem  Amplifiers.
Chapter 9 Sinusoids and Phasors
Chapter 13 Ideal Transformers
Chapter 11 AC Power Analysis
Ideal Transformers Chapter Objectives:
MAT 3237 Differential Equations
Chapter 9 Sinusoids and Phasors
Chapter 9 Complex Numbers and Phasors
The Laplace Transform Prof. Brian L. Evans
Chapter 15 Introduction to the Laplace Transform
Chapter 5 Z Transform.
Chapter 5 AM, FM, and Digital Modulated Systems
Chapter 6 Bandpass Random Processes
Chapter4 Bandpass Signalling Definitions
Chapter 7 Probability of Error for Coherent Bandpass Systems
Transmitters and Receivers
Chapter 2 Signal Bandwidth
Chapter4 Bandpass Signalling Bandpass Filtering and Linear Distortion
Chapter4 Bandpass Signalling Definitions
Chapter 11 AC Power Analysis
Chapter 2 Linear Systems
EE-314 Signals and Linear Systems
Chapter 2 Ideal Sampling and Nyquist Theorem
Chapter 2 Problems Previous Exams and quizzes Huseyin Bilgekul Eeng360 Communication Systems I Department of Electrical.
Fourier Transform and Spectra
Chapter 2 Discrete Fourier Transform (DFT)
Fundamentals of Electric Circuits Chapter 15
Chapter 4 THE LAPLACE TRANSFORM.
Chapter4 Bandpass Signalling Bandpass Filtering and Linear Distortion
Chapter 2 Problems Previous Exams and quizzes Huseyin Bilgekul Eeng360 Communication Systems I Department of Electrical.
Chapter 7 Binary Receivers
Fourier Transform and Spectra
Chapter 7 Error Probabilities for Binary Signalling
Presentation transcript:

Chapter 15 Advanced Circuit Analysis Chapter Objectives: Know the definition of the Laplace transform. Be familiar with the properties of the Laplace transform. Be able to find the inverse Laplace transform. Learn the concept of convolution. Apply what is learned to integrodifferential equations. Huseyin Bilgekul Eeng 224 Circuit Theory II Department of Electrical and Electronic Engineering Eastern Mediterranean University

Fig. 15.1 Region of convergence for the Laplace transform

Fig. 15.3 A periodic function

Fig. 15.5 Decomposition of the periodic function in Fig. 15.2

Fig. 15.10 For Example 15.12

Fig. 15.11 (a) Folding x1(), (b) shifting x1(-) by t

Fig. 15.12 Overlapping of x1(t-) and x2() for: (a) 0 < t < 1, (b) 1 < t < 2, (c) 2 < t < 2, (d) 3 < t < 4,(e) t > 4.

Fig. 15.13 Convolution of signals x1(t) and x2(t) in Fig. 15.10.