You will learn: How to use formulas to solve routine problems.

Slides:



Advertisements
Similar presentations
Level 7 Surface Area - Cuboid and Cylinder 28-Mar-17
Advertisements

Working with Shapes in Two Dimensions
The National Certificate in Adult Numeracy
1 Related Rates Section Related Rates (Preliminary Notes) If y depends on time t, then its derivative, dy/dt, is called a time rate of change.
THIS IS With Host at... Your ABC.
FORMULAS C= d A=LW C= d A=LW D=2r D=2r. QUOTE OF THE DAY The greater the obstacle, the more glory in overcoming it. The greater the obstacle, the more.
Joe is putting a low fence around all four sides of a rectangular flower bed. The flower bed is 4 feet wide and 6 feet long.   Each section of fencing.
Surface Area of a Cube In a cube, all six faces are congruent.
Geometry Part 1B Perimeter By Julia Arnold, Dick Gill and Marcia Tharp for Elementary Algebra Math 03 online.
Surface Area of 10-5 Pyramids and Cones Warm Up Lesson Presentation
Surface Area and Volume
Chapter 6: Perimeter, Area, and Volume
BY MOHAN ABRAHAM Percy L. Julian High School S Elizabeth Ave., Chicago, IL GEOMETRY.
Geometry journal chapter 9 and 10
Find the circumference and area of circles.
Preview Warm Up California Standards Lesson Presentation.
Area Area problems involve finding the surface area for a two-dimensional figure.
9.4 – Perimeter, Area, and Circumference
By: Ana Zuniga 2 nd period.  It’s the measurements outside of the shape.  Formulas: Rectangle P= 2l+2w Square P= 4s math.about.com.
Objectives  Find volumes of prisms.  Find volumes of cylinders.
Perimeter and Area. Objectives Calculate the area of given geometric figures. Calculate the perimeter of given geometric figures. Use the Pythagorean.
Geometry.
Polygons, Circles, and Solids
 Write down objective and homework in agenda  Lay out homework (Graphing Picture)  Homework(Area Review)
Emily Reverman.  In this portfolio, you will see how to develop formulas for the area of different shapes (rectangle, parallelogram, trapezoid, and a.
Perimeter & Area Section 6.1.
Perimeter and Area. Common Formulas for Perimeter and Area Square Rectangle s l s w A = lw P = 4sP = 2l + 2w Perimeter and Area of Rectangle.
Area of a Parallelogram Area of a Triangle Circumference & Area of a Circle.
Chapter 9 Geometry © 2008 Pearson Addison-Wesley. All rights reserved.
Circle Formulas Vocabulary: Circumference Radius Diameter Pi.
Measurement Jeopardy CirclesPerimeter Area 3-D Surface Area And Volume $100 $200 $300 $400 $500 $100 $200 $300 $400 $500.
Perimeter & Area MATH 102 Contemporary Math S. Rook.
Geometry
MCHS ACT Review Plane Geometry. Created by Pam Callahan Spring 2013 Edition.
Chapter 8 Section 4 - Slide 1 Copyright © 2009 Pearson Education, Inc. AND.
Area, Volume, and Surface Area
Section 9-4 Perimeter, Area, and Circumference.
Measurement: Length, Area, and Volume
By : Noah Sichanthavong. Perimeter The border or outer boundary of a two dimensional shape. Square- 4s Rectangle- 2l+2w.
Geometry Formulas Geometry formulas work just like the ones we did when we were doing algebra. Remember, a formula is a rule: Jill always takes twice as.
TechConnect Concrete Math.
Formula One Math. What is the total surface area in square inches of the cylinder shown below? A.96π in 2 B.128π in 2 C.104π in 2 D.384π in 2 1.
Chapter 2 Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter 2-1 Solving Linear Equations and Inequalities.
Geometry.
TechConnect Concrete TechConnect Concrete Math. Place Values.
Springboard, Page 272, #1 This problem has an infinite number of answers. Below is just one example, but the premise is the same, no matter which numbers.
Agriculture Mechanics I.  Square measure is a system for measuring area. The area of an object is the amount of surface contained within defined limits.
Perimeter, Area, and Volume Geometry and andMeasurement.
Slide Copyright © 2009 Pearson Education, Inc. Pythagorean Theorem The sum of the squares of the lengths of the legs of a right triangle equals the.
Unit 3 - Study Guide Answers.
College Algebra Section R.3 Geometry Review Objectives of this Section Use the Pythagorean Theorem and Its Converse Know Geometry Formulas.
Section 10A Fundamentals of Geometry
FORMULAS Definitions Area Perimeter/Circumference Surface Area Volume Distance / Rate Simple Interest Density.
Grade 8 Math Chart By: Brandon Wright. Perimeter The distance around a 2 dimensional shape Square P= 4s Rectangle P= 2l+2w or P= 2 (l + w)
WARM UP 11/30/15 Write down one fun thing that you did over Thanksgiving Weekend; turn to a neighbor and share 1.
Page 292 HW Answers.
Surface Area and Volume At exactly 11:00 (12:30) I will put up the warm up. At your tables, do as many as you can in 3 minutes!
Finding Perimeter and Area Review. Perimeter The distance around the outside of an object. 10 feet 8 feet 10 feet Perimeter = = 36 feet.
Chapter 10 Geometry © 2010 Pearson Education, Inc. All rights reserved.
§ 3.3 Problem Solving in Geometry. Geometry Blitzer, Introductory Algebra, 5e – Slide #2 Section 3.3 Geometry is about the space you live in and the shapes.
1. 2 Chapter 6 Geometry 3.
7-9 Perimeter, Area, and Volume What You’ll Learn: To find the perimeter of polygons To find the perimeter of polygons To find the area of polygons/circles.
GEOMETRY REVIEW.
Area and Perimeter.
9.4 – Perimeter, Area, and Circumference
CAHSEE PREP. Week 3 Measurement and Geometry Valley OFL Prep Sessions.
Section 9.3 Perimeter and Area
Geometry Unit Formula Sheet
Using Substitution to Evaluate Algebraic Expressions and Formulas
Presentation transcript:

You will learn: How to use formulas to solve routine problems. How use formulas to find area and volume. How to rearrange a formula to isolate a variable. How to use formulas that contain a constant such as pi (π). How to make the best use of the GED formula page.

1. variable a. a numerical constant which equals approximately 3.14 2. pi b. the distance around the outside edge of a circle c. measurement of tiling or covering a space expressed in square units 3. formula 4. circumference d. number represented by a letter in a formula 5. area e. method to solve routine problems

• We may use formulas in our daily lives. Points to Remember: • We may use formulas in our daily lives. • When we use formulas, we substitute numbers for the letters. • These numbers are the variables. • You will be given a page of formulas to use when you take

Perimeter Formulas: Perimeter of a Square Perimeter of a Rectangle P = 4S P = 2L + 2W Perimeter of a Triangle P = S1 + S2 + S3

Samantha and Sharon went for a walk in the neighborhood Samantha and Sharon went for a walk in the neighborhood. They walked all around the edge of the city park. The park is one mile long and 3/4 mile wide. Then they walked twice around the path that encircles the fountain. The diameter of the circle is 20 feet. Approximately how many miles did the girls walk altogether? 2. The Lutheran Church in Grass Town is six miles due east of City Hall on Jackson Street. The post office is on Miller Avenue which is four miles south of Jackson Street. It is two miles east of City Hall and four miles west of the church. How far is it to walk from the church to the post office to City Hall? Is there enough information to solve this problem?

1) 9 inches 2) 12 inches a b 3) 15 inches 4) 18 inches 6 inches 3. In the triangle below, the base is 6 inches, side “a” is half the base, and side “b” is 1 1/2 times the base. What is the perimeter of the triangle? 1) 9 inches 2) 12 inches a b 3) 15 inches 4) 18 inches 6 inches 5) 22 inches

Area Formulas: Area of a Square Area of a Rectangle A = S2 A = LW Area of a Parallelogram Area of a Trapezoid Area of a Triangle A = 1/2 BH A = BH A = 1/2 (B1 + B2)H

1. Farmer Brown planted 16 rows of corn in a rectangular field 1. Farmer Brown planted 16 rows of corn in a rectangular field. The area of the field was 1000 square feet. Which of the following could be the dimensions for the length and width of the field? A. 80 feet x 12.5 feet B. 100 feet x 10 feet C. 20 feet x 50 feet D. 40 feet x 25 feet E. all of the above

Circle Formulas: Circumference of a Circle Area of a Circle C = πD Term Definition circumference C the distance around the outside of a circle pi (π) π a numerical constant approximately equal to 3.14 radius R the distance from the center of a circle to any point on the outside diameter D the distance from one side of the circle to another passing through the center Circumference of a Circle Area of a Circle C = πD A = πR2 diameter radius diameter radius

1. Campfire Girls and Boys used a fire pit that was a circle with a radius of two feet. The fire regulations required that an area two feet from the edge of the pit be cleared of all plant material and, also, not used for seating. What is the total area of the camp fire including the cleared area? 2. The Parks Department is planting a circular garden in the city park. The diameter of the garden is 10 feet. The concrete mowing strip around the garden is one foot wide. What is area of the mowing strip? 1) 34.54 sq. ft. 2) 78.5 sq. ft. 3) 100 sq. ft. 4) 113.04 sq. ft. 5) 138.16 sq. ft.

Volume Formulas: Volume of a Cylinder Volume of a Cube or a Rectangular Solid V = LWH V = πR2H Volume of a Square Pyramid Volume of a Cone

1) 90 cubic feet 2) 105 cubic feet 3) 165 cubic feet 4) 231 cubic feet Tony went to Mailboxes, Etc. to buy a shipping box to send a present to his family in Utah. The present weighed 11 pounds and was 7 inches long, 3 inches wide, and 5 inches high. Which of the following boxes should he choose if he wants the smallest one possible? 1) 90 cubic feet 2) 105 cubic feet 3) 165 cubic feet 4) 231 cubic feet 5) 250 cubic feet 2. The Five A Day vegetable cannery processes green beans in two sizes. The smaller can is five inches high and has a top with a diameter of three inches. What is the approximate volume of the can? 1) 10 cubic inches 2) 25 cubic inches 3) 35 cubic inches 4) 110 cubic inches 5) 135 cubic inches

Coordinate Geometry: Line: Slope = m = Slope-intercept form for the equation of a line: y = mx + b Point-slope form for the equation of a line: y - y 1 = m(x - x 1) Distance = Midpoint =

Pythagorean Theorem: Finding the Hypotenuse Finding a Leg This section will explain how to use The Pythagorean Theorem to find a missing leg. If we are given a triangle's leg and hypotenuse, then we would use the equation to calculate the length of the missing leg. Say we know the longest length to be 11 in and one of the other shorter sides to be 6 in. The example below outlines the process by which we can calculate the missing length. This section will explain how to use The Pythagorean Theorem to find a missing hypotenuse. If we are given a triangle's legs, then we would use the equation to calculate the length of the hypotenuse. Say we know the shortest sides to be 3 m and 7 m. The example below outlines the process by which we can calculate the hypotenuse. Finding the Hypotenuse Finding a Leg

Measures of Central Tendency:

Simple Interest = Principle x Rate x Time (in years) Three things are needed to calculate simple interest: Principle = the amount put into the bank or the amount borrowed from the bank Rate = the percent Time = how many years the money is in the savings account at the bank or how many years it will take you to pay back the loan. The formula for calculating interest is very simple: Simple Interest = Principle x Rate x Time (in years) The tricky part about calculating the interest is the time aspect. The time must be in years. If the time is given in months, simply divide your months by 12. This is because there are 12 months in a year.

Distance Formula: Distance = Rate x Time D=RT

Total Cost Formula: