Solutions.

Slides:



Advertisements
Similar presentations
Properties of solutions
Advertisements

Solutions & Concentration. Water  Polar molecule w/ polar bonds  Causes surface tension & ability to dissolve polar molecules and ionic compounds.
Physical Properties of Solutions Unit 10 Why are some compounds more effective in melting ice than others?
Solutions C-16 Properties of solutions Solutions … Mixture (but special)  Solute + solvent Homogeneous (molecular level) Do not disperse light.
Solutions Chapter 16. Desired Learning Objectives 1.You will be able to describe and categorize solutions 2.You will be able to calculate concentrations.
I. Characteristics of solutions a. Mixtures and solutions i. Mixtures are either heterogeneous or homogeneous. 1. Heterogeneous mixtures have non-uniform.
Aqueous Solutions Solution: Homogeneous mixture; solid liquid, or gas Soluble: Capable of being dissolved Solute: Substance that is dissolved, present.
Solutions and their Behavior Chapter Identify factors that determine the rate at which a solute dissolves 2. Identify factors that affect the solubility.
Solutions What Are Solutions? Solution- A homogeneous mixture: a solution has the same composition throughout the mixture. Solvent- does the dissolving.
Chapter 16 Properties of solutions. Making solutions l A substance dissolves faster if- l It is stirred or shaken. l The particles are made smaller. l.
Mixtures and Solutions Chapter 14. Heterogeneous Mixtures  Suspensions –Mixture containing particles that settle out if left undisturbed. –Particles.
Classifications of Mixtures Heterogeneous Mixtures—composed of different types of phases of substances - ex: Fruit salad Granite Homogeneous Mixtures—the.
Solutions Chapter 13 & 14. Solution  A uniform mixture that may contain solids, liquids, or gases  Also called a homogeneous mixture  Composed of a.
Solutions and Mixtures Aqueous Solutions pg. 292 Something is dissolved in water…the something can vary. When compounds dissolve in water, it means that.
Types of Mixtures Solutions Suspensions Colloids.
Solutions CPS Chemistry. Definitions  Solutions A homogeneous mixture of two or more substances in a single phase  Soluble Capable of being dissolved.
Solutions Homogeneous mixtures containing two or more substances. –Solvent- The substance that dissolves –Solute- The substance being dissolved.
CHAPTER 16 Solutions & Colligative Properties. Solutions Particles less than 1 nm in size. Homogeneous mixtures Particles do not settle and cannot be.
Unit 8 Solution Chemistry
Concentrations & Solutions
S OLUTIONS. T YPES OF M IXTURES Heterogeneous mixtures-mixtures that do not blend smoothly-not uniform throughout-individual substances remain distinct.
Solutions. Solutions are: A homogeneous mixture of two or more substances in a single phase Composed of: 1.Solvent- the substance that does the dissolving.
Chemistry Chapter 15 Solutions Solutions A. Characteristics of Solutions -composed of two parts 1.The substance that is dissolved is the solute.
Solutions in Chemistry. You are responsible for taking notes from this powerpoint! In class you may work with your group to do calculations and answer.
Heterogeneous Mixtures Heterogeneous Mixtures: Not evenly blended Suspensions: a mixture containing particles that settle out if left undisturbed Colloids:
Physical Properties of Solutions Honors Unit 10. Solutions in the World Around Us.
Solutions. What is a solution? A homogeneous mixture A homogeneous mixture Composed of a solute dissolved in a solvent Composed of a solute dissolved.
Solutions. Definitions Solution: homogeneous mixture of 2 or more substances in a single physical state Solute: the substance dissolved in the solution.
Classifications of Mixtures Heterogeneous Mixtures—composed of different types of phases of substances - ex: Fruit salad Granite Homogeneous Mixtures—the.
Suspension colloid Brownian motion Tyndall effect soluble miscible insoluble immiscible concentrationmolaritymolalitymole fraction solvation heat of solutionunsaturated.
SOLUTIONS.
You will be given the answer. You must give the correct question.
Solutions.
Properties of Solutions
Unit 7: Solutions.
Heterogeneous vs. Homogeneous
Solutions (Chapter 14).
Solutions Chapter 18.
Unit 9: Solutions.
Solutions Review Chemistry.
Ch 14- Solutions.
Chapter 16 Solutions.
Solutions.
Solutions.
Solutions!.
Chapter 14: Mixtures and Solutions
Chapter 18 - Solutions.
* 07/16/96 SOLUTIONS *.
Bellwork 1. What do you remember about the difference between homogeneous mixtures and heterogeneous mixtures?
Solvation, Solubility, and Colligative Properties
Ch. 13 Solutions What is a solution?
Unit 5 – Pure Substances & Mixtures
Chapter 13 Solutions.
SOLUTIONS 2011.
Mixtures (Solutions) Heterogeneous Homogeneous Solution Heterogeneous
CHEMISTRY Matter and Change
I. The Nature of Solutions
Mixtures and solutions
Solution Chemistry Solutions are homogeneous mixtures of two or more pure substances. In a solution, the solute is dispersed uniformly throughout the solvent.
Making solutions What the solute and the solvent are
Heterogeneous vs. Homogeneous
Solutions Vocabulary Saturated solution Solubility
Chapter 16: Mixtures & Solutions
Chapter 16: Mixtures & Solutions
Solutions Chapter 15 Chapter 16.
CH. 15/16 clicker review solutions.
Starter S-161 Define Saturated solution Miscible
Unit 7: Solutions, Kinetics, and Equilibrium
Solutions.
Molarity, Dilutions, Solubility Curves, and Colligative Properties
Presentation transcript:

Solutions

Types of Mixtures Heterogeneous mixtures-mixtures that do not blend smoothly-not uniform throughout-individual substances remain distinct. Two Types of Heterogeneous Mixtures are: Suspensions Colloids

Suspensions Suspensions-heterogeneous mixture that settles upon standing. Can be separated by filter paper.

Colloids Colloids-heterogeneous mixtures that appear cloudy, cannot be separated by filtration, and demonstrate the Tyndall effect.

Tyndall Effect

Types of Mixtures (continued) Homogeneous mixtures-mixtures that do blend smoothly-uniform throughout-one set of properties. Homogeneous mixtures are called solutions.

Solutions Solutions consist of: Solute-part of the solution that gets dissolved Solvent-part of the solutions that does the dissolving Water is called the universal solvent.

Types of Solutions Enter answer text... State of Solute State of Solvent Example Gas Air Liquid Soft drink Antifreeze, vinegar Humidity Solid Dental filling Ocean water Bronze. Brass (alloys) Enter answer text...

Muddy water is an example of a 10 colloid solution suspension 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Fog is an example of a colloid solution suspension 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Italian salad dressing is an example of a 10 colloid solution suspension 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Kool-aid is an example of a 10 colloid solution suspension 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Pure air is an example of a 10 colloid solution suspension 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Salt is dissolved in water. Salt is the 10 solute solvent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Sugar is dissolved in sweet tea. The tea is the 10 solute solvent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Oxygen gas dissolved in lake water is an example of a 10 Liquid dissolved in a gas Gas dissolved in a liquid Gas dissolved in a solid Solid dissolved in a gas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Carbon dissolved in iron to make steel is an example of a 10 Solid dissolved in a solid Solid dissolved in a liquid Solid dissolved in a gas Liquid dissolved in a solid Gas dissolved in a solid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Properties of Solutions A substance that dissolves in a solvent is said to be soluble. Two liquids that are soluble in each other are said to be miscible. A substance that does not dissolve in a solvent is said to be insoluble. Two liquids that are not soluble in each other are said to be immiscible.

Insoluble Solids Immiscible Liquids

“LIKE DISSOLVES LIKE” Water is polar (due to asymmetrical arrangement of the molecule). Polar substances dissolve other polar substances (or ionic compounds).

Which of the following will dissolve in water? This one because it is polar!

“LIKE DISSOLVES LIKE” (CONTINUED) Nonpolar substances dissolve nonpolar substances. Polar substances cannot dissolve nonpolar substances. Nonpolar iodine dissolves in nonpolar hexane Nonpolar iodine does NOT dissolve in polar water Nonpolar hexane and polar water do not mix.

Corn oil does not dissolve in water. Corn oil is 10 Polar nonpolar 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Will calcium chloride (CaCl2) dissolve in water? 10 Yes No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Which of the following is immiscible in water? 10 Food coloring Vinegar Gasoline Lemon-aid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Factors Affecting the Rate of Dissolving Agitation-(stirring)-stirring or shaking increases the rate at which solutes dissolve. Surface area-breaking up a solid increases the surface area and increases the rate at which solids dissolve Temperature-as temperature increases, the rate of dissolving of solid solutes increases.

Solubility Solubility is defined as the amount of solute that will dissolve in a given amount of solvent at a particular temperature

Solubility (cont.) Solutions that contain the maximum amount of dissolved solute at a given temperature are said to be saturated. Solutions that contain less than the maximum amount of solute are said to be unsaturated. Solutions that contain more than the expected maximum amount of solute are said to be supersaturated (can be accomplished only through heating and careful cooling of the solvent).

Temperature and Solubility In warmer water, more solid will dissolve. This is because a high temperature means water molecules are moving faster which keeps more solid molecules suspended. Conversely a gas will be less soluble at a higher temperature. This is because when a gas molecules are moving faster they are able to escape from the liquid surface.

Solubility Curves A solubility curve is a graph of the solubilities of various substances as a function of temperature. When graphing the data for solubility, temperature is the manipulated variable, and mass of solute dissolved is the responding variable.

Interpreting Solubility Curves 1. What is the maximum amount of NaNO3 that will dissolve in 100 g of water at 10oC? 2. At what temperature will 70 g of NH4Cl dissolve in 100g of water? 3. Which substance has the greatest solubility at 0oC? 4. Which substance is the least soluble at 100oC? 5. 15 g of KClO3 is dissolved in 100 g of water at 50oC. Is the solution saturated, unsaturated, or supersaturated?

Concentration of Solutions Qualitative descriptions: Concentrated solutions-large amount of solute and small amount of solvent. Dilute solutions-large amount of solvent and small amount of solute. Quantitative descriptions: Solubility-grams of solute/ml of solution Molarity-moles of solute/L of solution Molality-moles of solute/kg of solvent Percent by Mass-mass of solute/mass of solution x100% Percent by Volume –volume of solute/volume of solution x 100%

Molarity A solution of NaCl has a molarity of 1 (1M). What does this mean? 1 mole of NaCl is dissolved in enough water to make 1 L. 1 mole = 58 g NaCl A 1M solution of NaCl contains 58 g of NaCl dissolved in 1 liter of water. How much salt is dissolved in a 2M solution? 116 g How much salt is dissolved in a 6 M solution? 348 g Which is more concentrated?

Molality A solution of NaCl contains 58 g of NaCl dissolved in 1 liter of water. The density of water is 1.00g/mL. What is the molality of the solution? 1 liter = 1000 mL = 1000 g = 1 kg 58 g = 1 mole Molality = 1 mole/1 kg = 1 m How much salt must be dissolved in 100 g of water in order to make a 2.0 molal (m) solution? 100 g = .1 kg 2.0 = x/.1 X = .2 moles x 58 g = 11.6 g Will molarity and molality for the same solution always be equal? Explain.

Colligative Properties Colligative properties are properties that depend on the number (not the type) of solute particles present in solution. Colligative properties include: 1) freezing point 2) boiling point 3) vapor pressure

Freezing Point Depression The freezing point of a solution is lower than the freezing point of the pure solvent. Example: Saltwater freezes at a lower temperature than pure water (below zero degrees Celsius). The greater the number of ions in the solution, the lower the freezing point. Example: NaCl consists of two ions; Na+ and Cl- CaCl2 consists of three ions; Ca2+ , Cl- , and Cl- Which has the lower freezing point? CaCl2

Boiling Point Elevation The boiling point of a solution is higher than the boiling point of the pure solvent. Example: Saltwater boils at a higher temperature than pure water (at a temperature above 100 degrees Celsius). The greater the number of ions in the solution, the higher the boiling point. Which boils at a higher temperature; a solution of NaCl or a solution of CaCl2 CaCl2

Vapor Pressure Lowering Vapor pressure is the pressure exerted by the vapor particles on the surface of a liquid. The vapor pressure of a solution is lower than the vapor pressure of the pure solvent. Due to the presence of solute particles, fewer solvent particles are able to escape from the surface of the liquid resulting in a lower pressure. If the vapor pressure is lower, the boiling point will be higher.

Which of the following is NOT a colligative property? 10 Boiling point 2. Density Freezing point Vapor pressure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

The freezing point of a solvent will ____ when a solute is added. 10 go up go down remain the same 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

The boiling point of a solvent will ____ when a solute is added. 10 go up go down remain the same 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Which of the following solutes will result in a solution having the highest boiling point? 10 NaCl CaCl2 AlCl3 C12H22O11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

If cost was not an issue, which of the following salts would be the most effective road deicer? 10 NaCl CaCl2 AlCl3 All would be equally effective 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Which solution would have the lowest freezing point? 10 1 M AlCl3 2 M NaCl 3 M CaCl2 4 M C6H12O6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Problems Involving Colligative Properties The equation used to determine the Freezing Point Depression and Boiling Point Elevation is: ∆T =i Kfm where: ∆T represents temperature change Kf is the freezing point depression constant (this value is specific to each solvent) m represents molality i represents the number of ions making up the solute. Note: molality = moles of solute/kg of solvent The same equation is used to determine the boiling point elevation however, Kb is substituted for Kf.

Practice Problem Sodium chloride is often used to prevent icy roads and to freeze ice cream. What is the freezing point of a 0.029 m aqueous solution of sodium chloride? Molality = 0.029 Kf for water = 1.86 i = 2 ∆T =i Kfm ∆T = 2 (1.86) 0.029 ∆T = .11 0 -.11 = -.11oC

Practice Problem #2 A lab technician determines that the boiling point of an aqueous solution of a calcium chloride solution (CaCl2) is 101.12oC. What is the solution’s molality? ∆T = 101.12 – 100 = 1.12 Kb for water = .512 i = 3 for CaCl2 ∆T =i Kbm 1.12 = 3 (0.512) x X=0.729 moles/kg of solvent

Diluting Molar Solutions You can prepare a less concentrated solution from a more concentrated solution by diluting the solution (increase the solvent particles) The following equation can be used: M1V1 = M2V2 where: M1 and V1 represent the molarity and volume of the concentrated solutions M2 and V2 represent the molarity and volume of the diluted solutions.

Practice Problem How many milliliters of a 5.0 M H2SO4 solution would you need to prepare 100 mL of a 0.25 M H2SO4 solution? M1V1 = M2V2 M1 = 5.0 M V1 = x M2 = 0.25 M V2=100 mL 5(x) = 0.25 (100) X = 5 mL