Xinu Semaphores.

Slides:



Advertisements
Similar presentations
1 Chapter 5 Concurrency: Mutual Exclusion and Synchronization Principals of Concurrency Mutual Exclusion: Hardware Support Semaphores Readers/Writers Problem.
Advertisements

Concurrency: Mutual Exclusion and Synchronization Chapter 5.
Ch 7 B.
Ch. 7 Process Synchronization (1/2) I Background F Producer - Consumer process :  Compiler, Assembler, Loader, · · · · · · F Bounded buffer.
Chapter 6: Process Synchronization
5.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts with Java – 8 th Edition Chapter 5: CPU Scheduling.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 6: Process Synchronization.
1 Concurrency: Mutual Exclusion and Synchronization Chapter 5.
1 Concurrency: Mutual Exclusion and Synchronization Chapter 5.
6/12/2015Page 1 Inter-Process Communication and Synchronization B. Ramamurthy.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 7: Process Synchronization Background The Critical-Section Problem Synchronization.
Semaphores and Mailboxes B. Ramamurthy 1. Page 2 Critical sections and Semaphores When multiples tasks are executing there may be sections where only.
Chapter 6: Process Synchronization. Outline Background Critical-Section Problem Peterson’s Solution Synchronization Hardware Semaphores Classic Problems.
Synchronization Solutions
Instructor: Umar KalimNUST Institute of Information Technology Operating Systems Process Synchronization.
Operating Systems CSE 411 CPU Management Oct Lecture 13 Instructor: Bhuvan Urgaonkar.
Concurrency, Mutual Exclusion and Synchronization.
Concurrency: Mutual Exclusion and Synchronization Chapter 5.
6.3 Peterson’s Solution The two processes share two variables: Int turn; Boolean flag[2] The variable turn indicates whose turn it is to enter the critical.
Midterm 1 – Wednesday, June 4  Chapters 1-3: understand material as it relates to concepts covered  Chapter 4 - Processes: 4.1 Process Concept 4.2 Process.
Page 1 Task Control: Signals and Alarms Chapter 7 and 8 B. Ramamurthy.
1 Chapter 6: Process Synchronization Background The Critical-Section Problem Peterson’s Solution Special Machine Instructions for Synchronization Semaphores.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 7: Process Synchronization Background The Critical-Section Problem Synchronization.
Chap 6 Synchronization. Background Concurrent access to shared data may result in data inconsistency Maintaining data consistency requires mechanisms.
Concurrency: Mutual Exclusion and Synchronization Chapter 5.
1 Concurrency: Mutual Exclusion and Synchronization Chapter 5.
Chapter 5 Concurrency: Mutual Exclusion and Synchronization Operating Systems: Internals and Design Principles, 6/E William Stallings Patricia Roy Manatee.
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9 th Edition Chapter 5: Process Synchronization.
Chapter 5 Concurrency: Mutual Exclusion and Synchronization Operating Systems: Internals and Design Principles, 6/E William Stallings Patricia Roy Manatee.
Background Concurrent access to shared data may result in data inconsistency Maintaining data consistency requires mechanisms to ensure the orderly execution.
Chapter 5 Concurrency: Mutual Exclusion and Synchronization Operating Systems: Internals and Design Principles, 6/E William Stallings Patricia Roy Manatee.
Process Synchronization CS 360. Slide 2 CS 360, WSU Vancouver Process Synchronization Background The Critical-Section Problem Synchronization Hardware.
Silberschatz, Galvin and Gagne  2002 Modified for CSCI 399, Royden, Operating System Concepts Operating Systems Lecture 22 Semaphores Classic.
3/1/2016Page 1 Realtime System Fundamentals : Scheduling B. Ramamurthy.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 6: Process Synchronization.
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition Chapter 5: Process Synchronization.
Chapter 6 Synchronization Dr. Yingwu Zhu. The Problem with Concurrent Execution Concurrent processes (& threads) often access shared data and resources.
6.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 6: Synchronization Background The Critical-Section Problem Peterson’s.
6.1 Silberschatz, Galvin and Gagne ©2005 Operating System Principles 6.5 Semaphore Less complicated than the hardware-based solutions Semaphore S – integer.
Chapter 5 Concurrency: Mutual Exclusion and Synchronization Operating Systems: Internals and Design Principles, 6/E William Stallings Patricia Roy Manatee.
Semaphores Synchronization tool (provided by the OS) that does not require busy waiting. Logically, a semaphore S is an integer variable that, apart from.
Chapter 6: Process Synchronization
Process Synchronization
Chapter 5: Process Synchronization
Process Synchronization: Semaphores
PARALLEL PROGRAM CHALLENGES
Chapter 5: Process Synchronization – Part II
Chapter 5: Process Synchronization
Chapter 5: Process Synchronization
Chapter 6: Process Synchronization
Realtime System Fundamentals : Scheduling and Priority-based scheduling B. Ramamurthy cse321-fall2014 9/20/2018.
Inter-Process Communication and Synchronization
Concurrency: Mutual Exclusion and Synchronization
Critical Section and Critical Resources
Realtime System Fundamentals : Scheduling and Priority-based scheduling B. Ramamurthy 11/22/2018.
Xinu Semaphores.
Realtime System Fundamentals : Scheduling and Priority-based scheduling B. Ramamurthy cse321-fall /27/2018.
Critical Section and Critical Resources
Topic 6 (Textbook - Chapter 5) Process Synchronization
Semaphore Originally called P() and V() wait (S) { while S <= 0
Process Synchronization
Module 7a: Classic Synchronization
Lecture 2 Part 2 Process Synchronization
Critical section problem
Realtime System Fundamentals : Scheduling and Priority-based scheduling B. Ramamurthy Amrita-UB-MSES /11/2013.
Concurrency: Mutual Exclusion and Process Synchronization
Mutual Exclusion, Synchronization and Classical InterProcess Communication (IPC) Problems B.Ramamurthy CSE421 2/18/2019 B.Ramamurthy.
Xinu Semaphores.
Concurrency, Mutual Exclusion and Synchronization
Presentation transcript:

Xinu Semaphores

Concurrency An important and fundamental feature in modern operating systems is concurrent execution of processes/threads. This feature is essential for the realization of multiprogramming, multiprocessing, distributed systems, and client-server model of computation. Concurrency encompasses many design issues including communication and synchronization among processes, sharing of and contention for resources. In this discussion we will look at the various design issues/problems and the wide variety of solutions available. 9/19/2018

Principles of Concurrency Interleaving and overlapping the execution of processes. Consider two processes P1 and P2 executing the function echo: { input (in, keyboard); out = in; output (out, display); } 9/19/2018

...Concurrency (contd.) P1 invokes echo, after it inputs into in , gets interrupted (switched). P2 invokes echo, inputs into in and completes the execution and exits. When P1 returns in is overwritten and gone. Result: first ch is lost and second ch is written twice. This type of situation is even more probable in multiprocessing systems where real concurrency is realizable thru’ multiple processes executing on multiple processors. Solution: Controlled access to shared resource Protect the shared resource : in buffer; “critical resource” one process/shared code. “critical region” 9/19/2018

Interactions among processes In a multi-process application these are the various degrees of interaction: 1. Competing processes: Processes themselves do not share anything. But OS has to share the system resources among these processes “competing” for system resources such as disk, file or printer. Co-operating processes : Results of one or more processes may be needed for another process. 2. Co-operation by sharing : Example: Sharing of an IO buffer. Concept of critical section. (indirect) 3. Co-operation by communication : Example: typically no data sharing, but co-ordination thru’ synchronization becomes essential in certain applications. (direct) 9/19/2018

Interactions ...(contd.) Among the three kinds of interactions indicated by 1, 2 and 3 above: 1 is at the system level: potential problems : deadlock and starvation. 2 is at the process level : significant problem is in realizing mutual exclusion. 3 is more a synchronization problem. We will study mutual exclusion and synchronization here, and defer deadlock, and starvation for a later time. 9/19/2018

Mutual exclusion problem Successful use of concurrency among processes requires the ability to define critical sections and enforce mutual exclusion. Critical section : is that part of the process code that affects the shared resource. Mutual exclusion: in the use of a shared resource is provided by making its access mutually exclusive among the processes that share the resource. This is also known as the Critical Section (CS) problem. 9/19/2018

Software Solutions: Algorithm 1 Process 0 ... while turn != 0 do nothing; // busy waiting < Critical Section> turn = 1; Problems : Strict alternation, Busy Waiting Process 1 ... while turn != 1 do nothing; // busy waiting < Critical Section> turn = 0; 9/19/2018

Algorithm 2 PROCESS 0 ... flag[0] = TRUE; while flag[1] do nothing; <CRITICAL SECTION> flag[0] = FALSE; PROBLEM : Potential for deadlock, if one of the processes fail within CS. PROCESS 1 ... flag[1] = TRUE; while flag[0] do nothing; <CRITICAL SECTION> flag[1] = FALSE; 9/19/2018

Algorithm 3 Combined shared variables of algorithms 1 and 2. Process Pi do { flag [i]:= true; turn = j; while (flag [j] and turn = j) ; critical section flag [i] = false; remainder section } while (1); Solves the critical-section problem for two processes. 9/19/2018

Semaphores Think about a semaphore as a class Attributes: semaphore value, Functions: init, wait, signal Support provided by OS Considered an OS resource, a limited number available: a limited number of instances (objects) of semaphore class is allowed. Can easily implement mutual exclusion among any number of processes. 9/19/2018

Critical Section of n Processes Shared data: Semaphore mutex; //initially mutex = 1 Process Pi: do { mutex.wait(); critical section mutex.signal(); remainder section } while (1); 9/19/2018

Semaphore Implementation Define a semaphore as a class: class Semaphore { int value; // semaphore value ProcessQueue L; // process queue //operations wait() signal() } In addition, two simple utility operations: block() suspends the process that invokes it. Wakeup() resumes the execution of a blocked process P. 9/19/2018

Semantics of wait and signal Semaphore operations now defined as S.wait(): S.value--; if (S.value < 0) { add this process to S.L; block(); // block a process } S.signal(): S.value++; if (S.value <= 0) { remove a process P from S.L; wakeup(); // wake a process 9/19/2018

Semaphores for CS Semaphore is initialized to 1. The first process that executes a wait() will be able to immediately enter the critical section (CS). (S.wait() makes S value zero.) Now other processes wanting to enter the CS will each execute the wait() thus decrementing the value of S, and will get blocked on S. (If at any time value of S is negative, its absolute value gives the number of processes waiting blocked. ) When a process in CS departs, it executes S.signal() which increments the value of S, and will wake up any one of the processes blocked. The queue could be FIFO or priority queue. 9/19/2018

Two Types of Semaphores Counting semaphore – integer value can range over an unrestricted domain. Binary semaphore – integer value can range only between 0 and 1; can be simpler to implement. ex: nachos Can implement a counting semaphore using a binary semaphore. 9/19/2018

Semaphore for Synchronization Execute B in Pj only after A executed in Pi Use semaphore flag initialized to 0 Code: Pi Pj   A flag.wait() flag.signal() B 9/19/2018

Classical Problems of Synchronization Bounded-Buffer Problem Readers and Writers Problem Dining-Philosophers Problem 9/19/2018

Producer/Consumer problem repeat produce item v; b[in] = v; in = in + 1; forever; Consumer repeat while (in <= out) nop; w = b[out]; out = out + 1; consume w; forever; 9/19/2018

Solution for P/C using Semaphores Producer repeat produce item v; MUTEX.wait(); b[in] = v; in = in + 1; MUTEX.signal(); forever; What if Producer is slow or late? Consumer repeat while (in <= out) nop; MUTEX.wait(); w = b[out]; out = out + 1; MUTEX.signal(); consume w; forever; Ans: Consumer will busy-wait at the while statement. 9/19/2018

P/C: improved solution Producer repeat produce item v; MUTEX.wait(); b[in] = v; in = in + 1; MUTEX.signal(); AVAIL.signal(); forever; What will be the initial values of MUTEX and AVAIL? Consumer repeat AVAIL.wait(); MUTEX.wait(); w = b[out]; out = out + 1; MUTEX.signal(); consume w; forever; ANS: Initially MUTEX = 1, AVAIL = 0. 9/19/2018

P/C problem: Bounded buffer Producer repeat produce item v; while((in+1)%n == out) NOP; b[in] = v; in = ( in + 1)% n; forever; How to enforce bufsize? Consumer repeat while (in == out) NOP; w = b[out]; out = (out + 1)%n; consume w; forever; ANS: Using another counting semaphore. 9/19/2018

P/C: Bounded Buffer solution Producer repeat produce item v; BUFSIZE.wait(); MUTEX.wait(); b[in] = v; in = (in + 1)%n; MUTEX.signal(); AVAIL.signal(); forever; What is the initial value of BUFSIZE? Consumer repeat AVAIL.wait(); MUTEX.wait(); w = b[out]; out = (out + 1)%n; MUTEX.signal(); BUFSIZE.signal(); consume w; forever; ANS: size of the bounded buffer. 9/19/2018

Semaphores - comments Intuitively easy to use. wait() and signal() are to be implemented as atomic operations. Difficulties: signal() and wait() may be exchanged inadvertently by the programmer. This may result in deadlock or violation of mutual exclusion. signal() and wait() may be left out. Related wait() and signal() may be scattered all over the code among the processes. 9/19/2018

Xinu Resources & Critical Resources Shared resources: need mutual exclusion Tasks cooperating to complete a job Tasks contending to access a resource Tasks synchronizing Critical resources and critical region A important synchronization and mutual exclusion primitive / resource is “semaphore” 9/19/2018

Critical sections and Semaphores When multiples tasks are executing there may be sections where only one task could execute at a given time: critical region or critical section There may be resources which can be accessed only be one of the processes: critical resource Semaphores can be used to ensure mutual exclusion to critical sections and critical resources 9/19/2018

Semaphores See semaphore.h of xinu 9/19/2018

Semaphores in exinu #include <kernel.h> #include <queue.h> /**< queue.h must define # of sem queues */ /* Semaphore state definitions */ #define SFREE 0x01 /**< this semaphore is free */ #define SUSED 0x02 /**< this semaphore is used */ /* type definition of "semaphore" */ typedef ulong semaphore; /* Semaphore table entry */ struct sentry { char state; /**< the state SFREE or SUSED */ short count; /**< count for this semaphore */ queue queue; /**< requires q.h. */ };

Semaphores in exinu (contd.) extern struct sentry semtab[]; /** * isbadsem - check validity of reqested semaphore id and state * @param s id number to test; NSEM is declared to be 100 in kernel.h A system typically has a predetermined limited number of semaphores */ #define isbadsem(s) (((ushort)(s) >= NSEM) || (SFREE == semtab[s].state)) /* Semaphore function declarations */ syscall wait(semaphore); syscall signal(semaphore); syscall signaln(semaphore, short); semaphore newsem(short); syscall freesem(semaphore); syscall scount(semaphore);

Definition of Semaphores functions static semaphore allocsem(void); /** * newsem - allocate and initialize a new semaphore. * @param count - number of resources available without waiting. * example: count = 1 for mutual exclusion lock * @return new semaphore id on success, SYSERR on failure */ semaphore newsem(short count) { irqmask ps; semaphore sem; ps = disable(); /* disable interrupts */ sem = allocsem(); /* request new semaphore */ if ( sem != SYSERR && count >= 0 ) /* safety check */ semtab[sem].count = count; /* initialize count */ restore(ps); /* restore interrupts */ return sem; /* return semaphore id */ } restore(ps);

Semaphore: newsem contd. /** * allocsem - allocate an unused semaphore and return its index. * Scan the global semaphore table for a free entry, mark the entry * used, and return the new semaphore * @return available semaphore id on success, SYSERR on failure */ static semaphore allocsem(void) { int i = 0; while(i < NSEM) /* loop through semaphore table */ { /* to find SFREE semaphore */ if( semtab[i].state == SFREE ) semtab[i].state = SUSED; return i; } i++; return SYSERR; }

Semaphore: wait(…) /** * wait - make current process wait on a semaphore * @param sem semaphore for which to wait * @return OK on success, SYSERR on failure */ syscall wait(semaphore sem) { irqmask ps; struct sentry *psem; pcb *ppcb; ps = disable(); /* disable interrupts */ if ( isbadsem(sem) ) /* safety check */ restore(ps); return SYSERR; } ppcb = &proctab[currpid]; /* retrieve pcb from process table */ psem = &semtab[sem]; /* retrieve semaphore entry */ if( --(psem->count) < 0 ) /* if requested resource is unavailable */ ppcb->state = PRWAIT; /* set process state to PRWAIT*/

Semaphore: wait() ppcb->sem = sem; /* record semaphore id in pcb */ enqueue(currpid, psem->queue); resched(); /* place in wait queue and reschedule */ } restore(ps); /* restore interrupts */ return OK;

Semaphore: signal() /*signal - signal a semaphore, releasing one waiting process, and block * @param sem id of semaphore to signal * @return OK on success, SYSERR on failure */ syscall signal(semaphore sem) { irqmask ps; register struct sentry *psem; ps = disable(); /* disable interrupts */ if ( isbadsem(sem) ) /* safety check */ restore(ps); return SYSERR; } psem = &semtab[sem]; /* retrieve semaphore entry */ if ( (psem->count++) < 0 ) /* release one process from wait queue */ { ready(dequeue(psem->queue), RESCHED_YES); } restore(ps); /* restore interrupts */ return OK;

Semaphore: usage Problem 1: Create 3 tasks that each sleep for a random time and update a counter. Counter is the critical resources shared among the processes. Only one task can update the counter at a time so that counter value is correct. Problem 2: Create 3 tasks; task 1 updates the counter by 1 and then signal task 2 that updates the counter by 2 and then signals task 3 to update the counter by 3.

Problem 1 #include <..> //declare semaphore semaphore mutex1 = newsem(1); int counter = 0; //declare functions: proc1,proc1, proc3 ready(create((void *)proc1, INITSTK, INITPRIO, “PROC1",, 2, 0, NULL), RESCHED_NO); ready(create((void *)proc2, INITSTK, INITPRIO, “PROC2",, 2, 0, NULL), RESCHED_NO); ready(create((void *)proc3, INITSTK, INITPRIO, “PROC3",, 2, 0, NULL), RESCHED_NO);

Problem 1: multi-tasks void proc1() { while (1) { sleep (rand()%10); wait(mutex1); counter++; signal(mutex1); } } void proc2() //similarly proc3

Problem 1 Task 1 Task 2 Counter1 Task 3

Problem 2 semaphore synch12 = newsem(0); semaphore synch23 = newsem(0); semaphore synch31 = newsem(0); ready(create((void *)proc1, INITSTK, INITPRIO, “PROC1",, 2, 0, NULL), RESCHED_NO); ready(create((void *)proc2, INITSTK, INITPRIO, “PROC2",, 2, 0, NULL), RESCHED_NO); ready(create((void *)proc3, INITSTK, INITPRIO, “PROC3",, 2, 0, NULL), RESCHED_NO); signal(synch31);

Task flow void proc1() void proc2() void proc3() { while (1) { sleep (rand()%10); wait(synch31); counter++; signal(synch12); } } void proc2() wait(synch12); signal(synch23); void proc3() sleep(rand()%10); wait(synch23); signal(synch31); } }