The Sine Rule C. McMinn. SOH/CAH/TOA can only be used for right-angled triangles. The Sine Rule can be used for any triangle: AB C a b c The sides are.

Slides:



Advertisements
Similar presentations
EcoTherm Plus WGB-K 20 E 4,5 – 20 kW.
Advertisements

Números.
1 A B C
Trend for Precision Soil Testing % Zone or Grid Samples Tested compared to Total Samples.
Trend for Precision Soil Testing % Zone or Grid Samples Tested compared to Total Samples.
AGVISE Laboratories %Zone or Grid Samples – Northwood laboratory
Trend for Precision Soil Testing % Zone or Grid Samples Tested compared to Total Samples.
PDAs Accept Context-Free Languages
/ /17 32/ / /
AP STUDY SESSION 2.
Reflection nurulquran.com.
EuroCondens SGB E.
Worksheets.
Slide 1Fig 26-CO, p.795. Slide 2Fig 26-1, p.796 Slide 3Fig 26-2, p.797.
Slide 1Fig 25-CO, p.762. Slide 2Fig 25-1, p.765 Slide 3Fig 25-2, p.765.
Addition and Subtraction Equations
David Burdett May 11, 2004 Package Binding for WS CDL.
Western Public Lands Grazing: The Real Costs Explore, enjoy and protect the planet Forest Guardians Jonathan Proctor.
Add Governors Discretionary (1G) Grants Chapter 6.
CALENDAR.
CHAPTER 18 The Ankle and Lower Leg
The 5S numbers game..
突破信息检索壁垒 -SciFinder Scholar 介绍
A Fractional Order (Proportional and Derivative) Motion Controller Design for A Class of Second-order Systems Center for Self-Organizing Intelligent.
Numerical Analysis 1 EE, NCKU Tien-Hao Chang (Darby Chang)
Media-Monitoring Final Report April - May 2010 News.
Break Time Remaining 10:00.
The basics for simulations
Factoring Quadratics — ax² + bx + c Topic
PP Test Review Sections 6-1 to 6-6
MM4A6c: Apply the law of sines and the law of cosines.
Regression with Panel Data
Dynamic Access Control the file server, reimagined Presented by Mark on twitter 1 contents copyright 2013 Mark Minasi.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
Progressive Aerobic Cardiovascular Endurance Run
Biology 2 Plant Kingdom Identification Test Review.
Area under curves Consider the curve y = f(x) for x  [a, b] The actual area under the curve is units 2 The approximate area is the sum of areas.
MaK_Full ahead loaded 1 Alarm Page Directory (F11)
TCCI Barometer September “Establishing a reliable tool for monitoring the financial, business and social activity in the Prefecture of Thessaloniki”
When you see… Find the zeros You think….
Midterm Review Part II Midterm Review Part II 40.
2011 WINNISQUAM COMMUNITY SURVEY YOUTH RISK BEHAVIOR GRADES 9-12 STUDENTS=1021.
Before Between After.
2011 FRANKLIN COMMUNITY SURVEY YOUTH RISK BEHAVIOR GRADES 9-12 STUDENTS=332.
Slide R - 1 Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Prentice Hall Active Learning Lecture Slides For use with Classroom Response.
Area of triangle b c a A C B Area = ½ ab sin C cm 6.3cm
2.10% more children born Die 0.2 years sooner Spend 95.53% less money on health care No class divide 60.84% less electricity 84.40% less oil.
Numeracy Resources for KS2
1 Non Deterministic Automata. 2 Alphabet = Nondeterministic Finite Accepter (NFA)
Static Equilibrium; Elasticity and Fracture
ANALYTICAL GEOMETRY ONE MARK QUESTIONS PREPARED BY:
Resistência dos Materiais, 5ª ed.
Clock will move after 1 minute
Lial/Hungerford/Holcomb/Mullins: Mathematics with Applications 11e Finite Mathematics with Applications 11e Copyright ©2015 Pearson Education, Inc. All.
Select a time to count down from the clock above
1.step PMIT start + initial project data input Concept Concept.
WARNING This CD is protected by Copyright Laws. FOR HOME USE ONLY. Unauthorised copying, adaptation, rental, lending, distribution, extraction, charging.
A Data Warehouse Mining Tool Stephen Turner Chris Frala
1 Dr. Scott Schaefer Least Squares Curves, Rational Representations, Splines and Continuity.
1 Non Deterministic Automata. 2 Alphabet = Nondeterministic Finite Accepter (NFA)
Introduction Embedded Universal Tools and Online Features 2.
úkol = A 77 B 72 C 67 D = A 77 B 72 C 67 D 79.
Schutzvermerk nach DIN 34 beachten 05/04/15 Seite 1 Training EPAM and CANopen Basic Solution: Password * * Level 1 Level 2 * Level 3 Password2 IP-Adr.
The Sine Rule قاعدة الجيب Wassim Al Meniem 1. *To use the sine rule to find the side of a triangle. * To use the sine rule to find the angle of a triangle.
The Sine Rule The Sine Rule is used for cases in which the Cosine Rule cannot be applied. It is used to find: 1. An unknown side, when we are given two.
The Sine Rule.
The Sine Rule C. McMinn.
Presentation transcript:

The Sine Rule C. McMinn

SOH/CAH/TOA can only be used for right-angled triangles. The Sine Rule can be used for any triangle: AB C a b c The sides are labelled to match their opposite angles a sinA b sinB c sinC= The Sine Rule:

Example 1: C B A 76 º 7cm Find the length of BC x a sinA c sinC b c a = x sin76º 7 sin63 º =× sin76ºsin76º × x = 7 sin63º × sin76º x = 7.6 cm 63 º Draw arrows from the sides to the opposite angles to help decide which parts of the sine rule to use.

Example 2: Q R P 55 º 82 º 15cm Find the length of PR x p sinP q sinQ rq p = 15 sin82º x sin43 º =× sin43ºsin43º × = x 15 sin82º sin43º × x = cm 43 º Draw arrows from the sides to the opposite angles to help decide which parts of the sine rule to use.

A B C D E F G H I P Q R 62 º 53 º 5 cm x 28 º 130 º 13 cm x 41 º 76 º x 26 mm 37 º 77 º 10 m x 5.2 cm 57 º x 62 º x 86 º 35 º 12 cm x 85 º 65 º 6 km º º 61 º

Remember: Draw a diagram Label the sides Set out your working exactly as you have been shown Check your answers regularly and ask for help if you need it

Finding an Angle The Sine Rule can also be used to find an angle, but it is easier to use if the rule is written upside-down! sinA a sinB b sinC c= Alternative form of the Sine Rule:

Example 1: A B C 72 º 6cm Find the size of angle ABC x º sinA a sinB b b a c = sin72º 6 sin xº 4 =× 44 ×4 × = sin xº 4 ×4 × sin xº = Draw arrows from the sides to the opposite angles to help decide which parts of the sine rule to use. 4cm sin72º 6 x = sin = 39.3º

Example 2: R Q P 85 º 8.2cm Find the size of angle PRQ x º sinP p sinR r q r p = sin85º 8.2 sin xº 7 =× 77 ×7 × = sin xº 7 ×7 × sin xº = cm sin85º 8.2 x = sin = 58.3º

º 6 cm xºxº 5 cm xºxº 105 º 8.8 cm 6.5cm xºxº 33 º 5.2 cm 5.5 cm xºxº 7.6 cm 8.2 cm xºxº 82 º 8 m 70 º 9.5 m (Be careful!) xºxº 27 º 6 km 3.5 km 74 º xºxº 7 mm 9 mm º 22.9 º

Remember: Draw a diagram Label the sides Set out your working exactly as you have been shown Check your answers regularly and ask for help if you need it