N-Grams and Corpus Linguistics

Slides:



Advertisements
Similar presentations
Chapter 6: Statistical Inference: n-gram Models over Sparse Data
Advertisements

Language Modeling: Ngrams
1 CS 388: Natural Language Processing: N-Gram Language Models Raymond J. Mooney University of Texas at Austin.
N-Grams and Corpus Linguistics 6 July Linguistics vs. Engineering “But it must be recognized that the notion of “probability of a sentence” is an.
N-gram model limitations Important question was asked in class: what do we do about N-grams which were not in our training corpus? Answer given: we distribute.
Albert Gatt Corpora and Statistical Methods – Lecture 7.
SI485i : NLP Set 4 Smoothing Language Models Fall 2012 : Chambers.
Smoothing N-gram Language Models Shallow Processing Techniques for NLP Ling570 October 24, 2011.
CS 4705 N-Grams and Corpus Linguistics Julia Hirschberg CS 4705.
CSC 9010: Special Topics, Natural Language Processing. Spring, Matuszek & Papalaskari 1 N-Grams CSC 9010: Special Topics. Natural Language Processing.
1 N-Grams and Corpus Linguistics September 2009 Lecture #5.
NATURAL LANGUAGE PROCESSING. Applications  Classification ( spam )  Clustering ( news stories, twitter )  Input correction ( spell checking )  Sentiment.
N-Grams and Corpus Linguistics.  Regular expressions for asking questions about the stock market from stock reports  Due midnight, Sept. 29 th  Use.
N-Grams and Corpus Linguistics
Lecture 1, 7/21/2005Natural Language Processing1 CS60057 Speech &Natural Language Processing Autumn 2007 Lecture 5 2 August 2007.
N-Gram Language Models CMSC 723: Computational Linguistics I ― Session #9 Jimmy Lin The iSchool University of Maryland Wednesday, October 28, 2009.
Page 1 Language Modeling. Page 2 Next Word Prediction From a NY Times story... Stocks... Stocks plunged this …. Stocks plunged this morning, despite a.
CS 4705 Lecture 6 N-Grams and Corpus Linguistics.
Smoothing Bonnie Dorr Christof Monz CMSC 723: Introduction to Computational Linguistics Lecture 5 October 6, 2004.
N-gram model limitations Q: What do we do about N-grams which were not in our training corpus? A: We distribute some probability mass from seen N-grams.
1 Language Model (LM) LING 570 Fei Xia Week 4: 10/21/2009 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAA A A.
N-Grams and Language Modeling
CS 4705 Lecture 15 Corpus Linguistics III. Training and Testing Probabilities come from a training corpus, which is used to design the model. –overly.
Introduction to Language Models Evaluation in information retrieval Lecture 4.
CS 4705 N-Grams and Corpus Linguistics. Homework Use Perl or Java reg-ex package HW focus is on writing the “grammar” or FSA for dates and times The date.
LING 438/538 Computational Linguistics Sandiway Fong Lecture 18: 10/26.
Language Modeling Julia Hirschberg CS Approaches to Language Modeling Context-Free Grammars –Use in HTK Ngram Models.
CS 4705 N-Grams and Corpus Linguistics. Spelling Correction, revisited M$ suggests: –ngram: NorAm –unigrams: anagrams, enigmas –bigrams: begrimes –trigrams:
CS 4705 Lecture 14 Corpus Linguistics II. Relating Conditionals and Priors P(A | B) = P(A ^ B) / P(B) –Or, P(A ^ B) = P(A | B) P(B) Bayes Theorem lets.
SI485i : NLP Set 3 Language Models Fall 2012 : Chambers.
1 Advanced Smoothing, Evaluation of Language Models.
8/27/2015CPSC503 Winter CPSC 503 Computational Linguistics Lecture 5 Giuseppe Carenini.
Natural Language Processing Lecture 6—9/17/2013 Jim Martin.
Machine Translation Course 3 Diana Trandab ă ț Academic year:
NGrams 09/16/2004 Instructor: Rada Mihalcea Note: some of the material in this slide set was adapted from an NLP course taught by Bonnie Dorr at Univ.
Natural Language Processing Language Model. Language Models Formal grammars (e.g. regular, context free) give a hard “binary” model of the legal sentences.
1 LIN6932 Spring 2007 LIN6932: Topics in Computational Linguistics Hana Filip Lecture 5: N-grams.
Lanugage Modeling Lecture 12 Spoken Language Processing Prof. Andrew Rosenberg.
Lecture 1, 7/21/2005Natural Language Processing1 CS60057 Speech &Natural Language Processing Autumn 2007 Lecture 7 8 August 2007.
6. N-GRAMs 부산대학교 인공지능연구실 최성자. 2 Word prediction “I’d like to make a collect …” Call, telephone, or person-to-person -Spelling error detection -Augmentative.
1 COMP 791A: Statistical Language Processing n-gram Models over Sparse Data Chap. 6.
Chapter 6: Statistical Inference: n-gram Models over Sparse Data
Statistical NLP: Lecture 8 Statistical Inference: n-gram Models over Sparse Data (Ch 6)
Chapter 6: N-GRAMS Heshaam Faili University of Tehran.
Chapter6. Statistical Inference : n-gram Model over Sparse Data 이 동 훈 Foundations of Statistic Natural Language Processing.
Lecture 4 Ngrams Smoothing
Ngram models and the Sparcity problem. The task Find a probability distribution for the current word in a text (utterance, etc.), given what the last.
Estimating N-gram Probabilities Language Modeling.
Natural Language Processing Statistical Inference: n-grams
2/29/2016CPSC503 Winter CPSC 503 Computational Linguistics Lecture 5 Giuseppe Carenini.
N-Gram Model Formulas Word sequences Chain rule of probability Bigram approximation N-gram approximation.
Statistical Methods for NLP Diana Trandab ă ț
Speech and Language Processing Lecture 4 Chapter 4 of SLP.
Language Modeling Part II: Smoothing Techniques Niranjan Balasubramanian Slide Credits: Chris Manning, Dan Jurafsky, Mausam.
Statistical Methods for NLP
N-Grams Chapter 4 Part 2.
CSC 594 Topics in AI – Natural Language Processing
N-gram Models Computational Linguistic Course
Statistical Language Models
CSCI 5832 Natural Language Processing
Speech and Language Processing
N-Grams and Corpus Linguistics
CPSC 503 Computational Linguistics
N-Gram Model Formulas Word sequences Chain rule of probability
CSCI 5832 Natural Language Processing
CSCE 771 Natural Language Processing
Presented by Wen-Hung Tsai Speech Lab, CSIE, NTNU 2005/07/13
Chapter 6: Statistical Inference: n-gram Models over Sparse Data
CSCE 771 Natural Language Processing
Presentation transcript:

N-Grams and Corpus Linguistics Lecture 8 August 3, 2005 9/19/2018

Simple N-Grams Assume a language has V word types in its lexicon, how likely is word x to follow word y? Simplest model of word probability: 1/V Alternative 1: estimate likelihood of x occurring in new text based on its general frequency of occurrence estimated from a corpus (unigram probability) popcorn is more likely to occur than unicorn Alternative 2: condition the likelihood of x occurring in the context of previous words (bigrams, trigrams,…) mythical unicorn is more likely than mythical popcorn 9/19/2018

N-grams A simple model of language Computes a probability for observed input. Probability is the likelihood of the observation being generated by the same source as the training data Such a model is often called a language model 9/19/2018

Computing the Probability of a Word Sequence P(w1, …, wn) = P(w1).P(w2|w1).P(w3|w1,w2). … P(wn|w1, …,wn-1) P(the mythical unicorn) = P(the) P(mythical|the) P(unicorn|the mythical) The longer the sequence, the less likely we are to find it in a training corpus P(Most biologists and folklore specialists believe that in fact the mythical unicorn horns derived from the narwhal) Solution: approximate using n-grams 9/19/2018

Bigram Model Approximate by P(unicorn|the mythical) by P(unicorn|mythical) Markov assumption: the probability of a word depends only on the probability of a limited history Generalization: the probability of a word depends only on the probability of the n previous words trigrams, 4-grams, … the higher n is, the more data needed to train backoff models 9/19/2018

Using N-Grams For N-gram models  P(wn-1,wn) = P(wn | wn-1) P(wn-1) By the Chain Rule we can decompose a joint probability, e.g. P(w1,w2,w3) P(w1,w2, ...,wn) = P(w1|w2,w3,...,wn) P(w2|w3, ...,wn) … P(wn-1|wn) P(wn) For bigrams then, the probability of a sequence is just the product of the conditional probabilities of its bigrams P(the,mythical,unicorn) = P(unicorn|mythical) P(mythical|the) P(the|<start>) 9/19/2018

N-grams Parameter Values: How many possible distinct probabilities will be needed? Total number of word tokens in the training data Total number of unique words: word types is our vocabulary size. 9/19/2018

N-gram Parameter sizes Vocabulary V – size |V| P(Wi = x) – how many different values for Wi? P(Wi = x| Wj = y ) – how many different values for Wi,Wi? P(Wi = x| Wk = z, Wj = y ) – how many different values for Wi,Wi, Wk ? 9/19/2018

Training and Testing N-Gram probabilities come from a training corpus overly narrow corpus: probabilities don't generalize overly general corpus: probabilities don't reflect task or domain A separate test corpus is used to evaluate the model, typically using standard metrics held out test set; development test set cross validation results tested for statistical significance 9/19/2018

A Simple Example P(I want to each Chinese food) = P(I | <start>) P(want | I) P(to | want) P(eat | to) P(Chinese | eat) P(food | Chinese) 9/19/2018

A Bigram Grammar Fragment from BERP .001 Eat British .03 Eat today .007 Eat dessert .04 Eat Indian .01 Eat tomorrow Eat a .02 Eat Mexican Eat at Eat Chinese .05 Eat dinner Eat in .06 Eat lunch Eat breakfast Eat some Eat Thai .16 Eat on 9/19/2018

.01 British lunch .05 Want a British cuisine .65 Want to .15 British restaurant .04 I have .60 British food .08 I don’t .02 To be .29 I would .09 To spend .32 I want .14 To have <start> I’m .26 To eat <start> Tell Want Thai .06 <start> I’d Want some .25 <start> I 9/19/2018

vs. I want to eat Chinese food = .00015 P(I want to eat British food) = P(I|<start>) P(want|I) P(to|want) P(eat|to) P(British|eat) P(food|British) = .25*.32*.65*.26*.001*.60 = .000080 vs. I want to eat Chinese food = .00015 Probabilities seem to capture ``syntactic'' facts, ``world knowledge'' eat is often followed by an NP British food is not too popular N-gram models can be trained by counting and normalization 9/19/2018

Bigram Counts 1 4 Lunch 17 19 Food 120 2 Chinese 52 Eat 12 3 860 10 To 1 4 Lunch 17 19 Food 120 2 Chinese 52 Eat 12 3 860 10 To 6 8 786 Want 13 1087 I lunch 9/19/2018

Bigram Probabilities Normalization: divide each row's counts by appropriate unigram counts for wn-1 Computing the bigram probability of I I C(I,I)/C(all I) p (I|I) = 8 / 3437 = .0023 Maximum Likelihood Estimation (MLE): relative frequency of e.g. 459 1506 213 938 3256 1215 3437 Lunch Food Chinese Eat To Want I 9/19/2018

What do we learn about the language? What's being captured with ... P(want | I) = .32 P(to | want) = .65 P(eat | to) = .26 P(food | Chinese) = .56 P(lunch | eat) = .055 What about... P(I | I) = .0023 P(I | want) = .0025 P(I | food) = .013 9/19/2018

P(I | want) = .0025 I want I want P(I | I) = .0023 I I I I want P(I | want) = .0025 I want I want P(I | food) = .013 the kind of food I want is ... 9/19/2018

Approximating Shakespeare As we increase the value of N, the accuracy of the n-gram model increases, since choice of next word becomes increasingly constrained Generating sentences with random unigrams... Every enter now severally so, let Hill he late speaks; or! a more to leg less first you enter With bigrams... What means, sir. I confess she? then all sorts, he is trim, captain. Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. 9/19/2018

Trigrams Quadrigrams Sweet prince, Falstaff shall die. This shall forbid it should be branded, if renown made it empty. Quadrigrams What! I will go seek the traitor Gloucester. Will you not tell me who I am? 9/19/2018

There are 884,647 tokens, with 29,066 word form types, in about a one million word Shakespeare corpus Shakespeare produced 300,000 bigram types out of 844 million possible bigrams: so, 99.96% of the possible bigrams were never seen (have zero entries in the table) Quadrigrams worse: What's coming out looks like Shakespeare because it is Shakespeare 9/19/2018

N-Gram Training Sensitivity If we repeated the Shakespeare experiment but trained our n-grams on a Wall Street Journal corpus, what would we get? This has major implications for corpus selection or design 9/19/2018

What’s a word anyways? I have a can opener; but I can’t open these cans. how many words? Word form inflected form as it appears in the text can and cans ... different word forms Lemma a set of lexical forms having the same stem, same POS and same meaning can and cans … same lemma Word token: an occurrence of a word I have a can opener; but I can’t open these cans. 11 word tokens (not counting punctuation) Word type: a different realization of a word I have a can opener; but I can’t open these cans. 10 word types (not counting punctuation) 9/19/2018

Another example Mark Twain’s Tom Sawyer Complete Shakespeare work 71,370 word tokens 8,018 word types tokens/type ratio = 8.9 (indication of text complexity) Complete Shakespeare work 884,647 word tokens 29,066 word types tokens/type ratio = 30.4 9/19/2018

Some Useful Empirical Observations A small number of events occur with high frequency A large number of events occur with low frequency You can quickly collect statistics on the high frequency events You might have to wait an arbitrarily long time to get valid statistics on low frequency events Some of the zeroes in the table are really zeros But others are simply low frequency events you haven't seen yet. How to address? 9/19/2018

Common words in Tom Sawyer but words in NL have an uneven distribution… 9/19/2018

Frequency of frequencies most words are rare 3993 (50%) word types appear only once they are called happax legomena (read only once) but common words are very common 100 words account for 51% of all tokens (of all text) 9/19/2018

Zipf’s Law Count the frequency of each word type in a large corpus List the word types in order of their frequency Let: f = frequency of a word type r = its rank in the list Zipf’s Law says: f  1/r In other words: there exists a constant k such that: f × r = k The 50th most common word should occur with 3 times the frequency of the 150th most common word. 9/19/2018

Word counts are interesting... As an indication of a text’s style As an indication of a text’s author But, because most words appear very infrequently, it is hard to predict much about the behavior of words (if they do not occur often in a corpus) --> Zipf’s Law 9/19/2018

Zipf’s Law on Tom Saywer k ≈ 8000-9000 except for The 3 most frequent words Words of frequency ≈ 100 9/19/2018

Plot of Zipf’s Law On chap. 1-3 of Tom Sawyer (≠ numbers from p. 25&26) f×r = k 9/19/2018

Plot of Zipf’s Law (con’t) On chap. 1-3 of Tom Sawyer f×r = k ==> log(f×r) = log(k) ==> log(f)+log(r) = log(k) 9/19/2018

Zipf’s Law, so what? Significance of Zipf’s Law for us: There are: A few very common words A medium number of medium frequency words A large number of infrequent words Principle of Least effort: Tradeoff between speaker and hearer’s effort Speaker communicates with a small vocabulary of common words (less effort) Hearer disambiguates messages through a large vocabulary of rare words (less effort) Significance of Zipf’s Law for us: For most words, our data about their use will be very sparse Only for a few words will we have a lot of examples 9/19/2018

Smoothing Techniques Every n-gram training matrix is sparse, even for very large corpora (Zipf’s law) Solution: estimate the likelihood of unseen n-grams Problems: how do you adjust the rest of the corpus to accommodate these ‘phantom’ n-grams? 9/19/2018

Add-one Smoothing For unigrams: For bigrams: Add 1 to every word (type) count Normalize by N (tokens) /(N (tokens) +V (types)) Smoothed count (adjusted for additions to N) is Normalize by N to get the new unigram probability: For bigrams: Add 1 to every bigram c(wn-1 wn) + 1 Incr unigram count by vocabulary size c(wn-1) + V 9/19/2018

But this changes counts drastically: Discount: ratio of new counts to old (e.g. add-one smoothing changes the BERP bigram (to|want) from 786 to 331 (dc=.42) and p(to|want) from .65 to .28) But this changes counts drastically: too much weight given to unseen ngrams in practice, unsmoothed bigrams often work better! 9/19/2018

Witten-Bell Discounting A zero ngram is just an ngram you haven’t seen yet…but every ngram in the corpus was unseen once…so... How many times did we see an ngram for the first time? Once for each ngram type (T) Est. total probability of unseen bigrams as View training corpus as series of events, one for each token (N) and one for each new type (T) 9/19/2018

Discount values for Witten-Bell are much more reasonable than Add-One We can divide the probability mass equally among unseen bigrams….or we can condition the probability of an unseen bigram on the first word of the bigram Discount values for Witten-Bell are much more reasonable than Add-One 9/19/2018

Good-Turing Discounting Re-estimate amount of probability mass for zero (or low count) ngrams by looking at ngrams with higher counts Estimate E.g. N0’s adjusted count is a function of the count of ngrams that occur once, N1 Assumes: word bigrams follow a binomial distribution We know number of unseen bigrams (VxV-seen) 9/19/2018

Backoff methods (e.g. Katz ‘87) For e.g. a trigram model Compute unigram, bigram and trigram probabilities In use: Where trigram unavailable back off to bigram if available, o.w. unigram probability E.g An omnivorous unicorn 9/19/2018

Summary N-gram probabilities can be used to estimate the likelihood Of a word occurring in a context (N-1) Of a sentence occurring at all Smoothing techniques deal with problems of unseen words in a corpus 9/19/2018