Introduction to Query Optimization

Slides:



Advertisements
Similar presentations
Examples of Physical Query Plan Alternatives
Advertisements

Overview of Query Evaluation (contd.) Chapter 12 Ramakrishnan and Gehrke (Sections )
Query Optimization Goal: Declarative SQL query
1 Overview of Query Evaluation Chapter Objectives  Preliminaries:  Core query processing techniques  Catalog  Access paths to data  Index matching.
1 Relational Query Optimization Module 5, Lecture 2.
Relational Query Optimization 198:541. Overview of Query Optimization  Plan: Tree of R.A. ops, with choice of alg for each op. Each operator typically.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Overview of Query Evaluation Chapter 12.
1 Implementation of Relational Operations Module 5, Lecture 1.
Relational Query Optimization (this time we really mean it)
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Overview of Query Evaluation Chapter 12.
Overview of Query Evaluation R&G Chapter 12 Lecture 13.
Query Optimization II R&G, Chapters 12, 13, 14 Lecture 9.
CS186 Final Review Query Optimization.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Relational Query Optimization Chapter 15.
Query Optimization Overview Zachary G. Ives University of Pennsylvania CIS 550 – Database & Information Systems December 2, 2004 Some slide content derived.
Overview of Query Optimization v Plan : Tree of R.A. ops, with choice of alg for each op. –Each operator typically implemented using a `pull’ interface:
Query Optimization R&G, Chapter 15 Lecture 16. Administrivia Homework 3 available today –Written exercise; will be posted on class website –Due date:
1 Implementation of Relational Operations: Joins.
Query Optimization, part 2 CS634 Lecture 13, Mar Slides based on “Database Management Systems” 3 rd ed, Ramakrishnan and Gehrke.
Overview of Implementing Relational Operators and Query Evaluation
Introduction to Database Systems1 Relational Query Optimization Query Processing: Topic 2.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Query Evaluation Chapter 12: Overview.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Overview of Implementing Relational Operators and Query Evaluation Chapter 12.
Query Optimization. overview Histograms A histogram is a data structure maintained by a DBMS to approximate a data distribution Equiwidth vs equidepth.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Overview of Query Evaluation Chapter 12.
1 Overview of Query Evaluation Chapter Overview of Query Evaluation  Plan : Tree of R.A. ops, with choice of alg for each op.  Each operator typically.
Database systems/COMP4910/Melikyan1 Relational Query Optimization How are SQL queries are translated into relational algebra? How does the optimizer estimates.
Database Systems/comp4910/spring20031 Evaluation of Relational Operations Why does a DBMS implements several algorithms for each algebra operation? What.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Overview of Implementing Relational Operators and Query Evaluation Chapter 12.
Introduction to Query Optimization, R. Ramakrishnan and J. Gehrke 1 Introduction to Query Optimization Chapter 13.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Introduction to Query Optimization Chapter 13.
Implementation of Database Systems, Jarek Gryz1 Relational Query Optimization Chapters 12.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Introduction To Query Optimization and Examples Chpt
Query Optimization. overview Application Programmer (e.g., business analyst, Data architect) Sophisticated Application Programmer (e.g., SAP admin) DBA,
Diskusi-08 Jelaskan dan berikan contoh penggunaan theta join, equijoin, natural join, outer join, dan semijoin The slides for this text are organized into.
Diskusi-5 Sebutkan perangkat (tools) yang berpotensi mendukung kebutuhan tugas-tugas manajerial (management work) Jelaskan enam karakteristik informasi.
Storage and Indexes Chapter 8 & 9
Latihan Answer the following questions using the relational schema from the Exercises at the end of Chapter 3: Create the Hotel table using the integrity.
Diskusi-16 Buatlah ringkasan tentang pertimbangan dalam desain yang ergonomis pada tiga perangkat utama komputer yaitu monitor, keyboard dan mouse (lihat.
CS222P: Principles of Data Management Lecture #15 Query Optimization (System-R) Instructor: Chen Li.
Latihan Create a separate table with the same structure as the Booking table to hold archive records. Using the INSERT statement, copy the records from.
Relational Algebra Chapter 4, Part A
Evaluation of Relational Operations
Overview of Query Optimization
File Organizations Chapter 8 “How index-learning turns no student pale
Introduction to Database Systems
Examples of Physical Query Plan Alternatives
Overview of Implementing Relational Operators Query Evaluation
Implementing Relational Operators Query Evaluation
External Sorting The slides for this text are organized into chapters. This lecture covers Chapter 11. Chapter 1: Introduction to Database Systems Chapter.
Relational Query Optimization
Selected Topics: External Sorting, Join Algorithms, …
Database Applications (15-415) DBMS Internals- Part IX Lecture 21, April 1, 2018 Mohammad Hammoud.
Relational Query Optimization
Overview of Query Evaluation
Overview of Query Evaluation
Overview of Query Evaluation
Implementation of Relational Operations
Relational Query Optimization
CS222P: Principles of Data Management Notes #13 Set operations, Aggregation, Query Plans Instructor: Chen Li.
Evaluation of Relational Operations: Other Techniques
Distributed Databases
Relational Query Optimization (this time we really mean it)
Overview of Query Evaluation
CS222: Principles of Data Management Lecture #15 Query Optimization (System-R) Instructor: Chen Li.
Relational Query Optimization
Relational Query Optimization
File Organizations and Indexing
Relational Algebra Chpt 4a Xintao Wu Raghu Ramakrishnan
Presentation transcript:

Introduction to Query Optimization Chapter 15 The slides for this text are organized into chapters. This lecture covers Chapter 13. Chapter 1: Introduction to Database Systems Chapter 2: The Entity-Relationship Model Chapter 3: The Relational Model Chapter 4 (Part A): Relational Algebra Chapter 4 (Part B): Relational Calculus Chapter 5: SQL: Queries, Programming, Triggers Chapter 6: Query-by-Example (QBE) Chapter 7: Storing Data: Disks and Files Chapter 8: File Organizations and Indexing Chapter 9: Tree-Structured Indexing Chapter 10: Hash-Based Indexing Chapter 11: External Sorting Chapter 12 (Part A): Evaluation of Relational Operators Chapter 12 (Part B): Evaluation of Relational Operators: Other Techniques Chapter 13: Introduction to Query Optimization Chapter 14: A Typical Relational Optimizer Chapter 15: Schema Refinement and Normal Forms Chapter 16 (Part A): Physical Database Design Chapter 16 (Part B): Database Tuning Chapter 17: Security Chapter 18: Transaction Management Overview Chapter 19: Concurrency Control Chapter 20: Crash Recovery Chapter 21: Parallel and Distributed Databases Chapter 22: Internet Databases Chapter 23: Decision Support Chapter 24: Data Mining Chapter 25: Object-Database Systems Chapter 26: Spatial Data Management Chapter 27: Deductive Databases Chapter 28: Additional Topics 1

Overview of Query Optimization Plan: Tree of R.A. ops, with choice of alg for each op. Each operator typically implemented using a `pull’ interface: when an operator is `pulled’ for the next output tuples, it `pulls’ on its inputs and computes them. Two main issues: For a given query, what plans are considered? Algorithm to search plan space for cheapest (estimated) plan. How is the cost of a plan estimated? Ideally: Want to find best plan. Practically: Avoid worst plans! We will study the System R approach. 2

Highlights of System R Optimizer Impact: Most widely used currently; works well for < 10 joins. Cost estimation: Approximate art at best. Statistics, maintained in system catalogs, used to estimate cost of operations and result sizes. Considers combination of CPU and I/O costs. Plan Space: Too large, must be pruned. Only the space of left-deep plans is considered. Left-deep plans allow output of each operator to be pipelined into the next operator without storing it in a temporary relation. Cartesian products avoided. 2

Schema for Examples Similar to old schema; rname added for variations. Sailors (sid: integer, sname: string, rating: integer, age: real) Reserves (sid: integer, bid: integer, day: dates, rname: string) Similar to old schema; rname added for variations. Reserves: Each tuple is 40 bytes long, 100 tuples per page, 1000 pages. Sailors: Each tuple is 50 bytes long, 80 tuples per page, 500 pages. 3

Motivating Example RA Tree: R.bid=100 AND S.rating>5 Reserves Sailors sid=sid bid=100 rating > 5 sname Motivating Example SELECT S.sname FROM Reserves R, Sailors S WHERE R.sid=S.sid AND R.bid=100 AND S.rating>5 Cost: 500+500*1000 I/Os By no means the worst plan! Misses several opportunities: selections could have been `pushed’ earlier, no use is made of any available indexes, etc. Goal of optimization: To find more efficient plans that compute the same answer. Reserves Sailors sid=sid bid=100 rating > 5 sname (Simple Nested Loops) (On-the-fly) Plan: 4

Alternative Plans 1 (No Indexes) Reserves Sailors sid=sid bid=100 sname (On-the-fly) rating > 5 (Scan; write to temp T1) temp T2) (Sort-Merge Join) Alternative Plans 1 (No Indexes) Main difference: push selects. With 5 buffers, cost of plan: Scan Reserves (1000) + write temp T1 (10 pages, if we have 100 boats, uniform distribution). Scan Sailors (500) + write temp T2 (250 pages, if we have 10 ratings). Sort T1 (2*2*10), sort T2 (2*3*250), merge (10+250) Total: 3560 page I/Os. If we used BNL join, join cost = 10+4*250, total cost = 2770. If we `push’ projections, T1 has only sid, T2 only sid and sname: T1 fits in 3 pages, cost of BNL drops to under 250 pages, total < 2000. 5

Alternative Plans 2 With Indexes (On-the-fly) sname Alternative Plans 2 With Indexes (On-the-fly) rating > 5 With clustered index on bid of Reserves, we get 100,000/100 = 1000 tuples on 1000/100 = 10 pages. INL with pipelining (outer is not materialized). (Index Nested Loops, sid=sid with pipelining ) (Use hash index; do bid=100 Sailors not write result to temp) Reserves Projecting out unnecessary fields from outer doesn’t help. Join column sid is a key for Sailors. At most one matching tuple, unclustered index on sid OK. Decision not to push rating>5 before the join is based on availability of sid index on Sailors. Cost: Selection of Reserves tuples (10 I/Os); for each, must get matching Sailors tuple (1000*1.2); total 1210 I/Os. 6

Cost Estimation For each plan considered, must estimate cost: Must estimate cost of each operation in plan tree. Depends on input cardinalities. We’ve already discussed how to estimate the cost of operations (sequential scan, index scan, joins, etc.) Must estimate size of result for each operation in tree! Use information about the input relations. For selections and joins, assume independence of predicates. We’ll discuss the System R cost estimation approach. Very inexact, but works ok in practice. More sophisticated techniques known now. 8

Summary Query optimization is an important task in a relational DBMS. Must understand optimization in order to understand the performance impact of a given database design (relations, indexes) on a workload (set of queries). Two parts to optimizing a query: Consider a set of alternative plans. Must prune search space; typically, left-deep plans only. Must estimate cost of each plan that is considered. Must estimate size of result and cost for each plan node. Key issues: Statistics, indexes, operator implementations. 19