Simulation of optical processes in GEANT4

Slides:



Advertisements
Similar presentations
Advanced Neutron Spectrometer (ANS) Geant4 Simulations
Advertisements

PET Design: Simulation Studies using GEANT4 and GATE - Status Report - Martin Göttlich DESY.
Quartz Plate Calorimeter Prototype Ugur Akgun The University of Iowa APS April 2006 Meeting Dallas, Texas.
W. Clarida, HCAL Meeting, Fermilab Oct. 06 Quartz Plate Calorimeter Prototype Geant4 Simulation Progress W. Clarida The University of Iowa.
Bulk Scintillator Light Yield  We have prepared samples of bulk scintillator in order to study optimization for the MICE Fiber Tracker  pT(1.25%) + 3HF(.1-1%)
1 MCP PET Simulation # of photon detected at photocathode 2. Efficiency & Material effect # of generated photon at 511keV 26000/MeV * =
KEK beam test H. Sakamoto. Purpose To optimize a concentration of the second dopant for scintillating fibers KEK beam test to study light yields for various.
Review of PID simulation & reconstruction in G4MICE Yordan Karadzhov Sofia university “St. Kliment Ohridski” Content : 1 TOF 2 Cerenkov.
3/18/20021 Update on DHC elements testing. Task force: A. Dyshkant, M.Martin, V. Rykalin V. Rykalin.
Simulating Optical Processes Using Geant4
In this event 240 eV electron is passing through the MICE Cerenkov detector.
Progress and plans on PID simulation and reconstruction Yordan Karadzhov Sofia university St. Kliment Ohridski.
Analysis of Saint-Gobain Scintillating Optical Fibers for use as Wave Guides for Cerenkov- Ring-Imaging-MPPC Array By Chris Ketter 26 Sept
Impact of synchrotron radiation in LEPTON COLLIDER arcs
HCAL Fall Meeting 10/15/2005, Fermilab 1 Quartz Plate R&D Status F. Duru, S. Ayan, U. Akgun, J. Olson, A. Albayrak, Y. Onel The University Of Iowa V.Podrasky,
Light Collection with Fiber Optics Christopher Crawford EDM Collaboration Meeting
Physics III: Cuts, Decay and Optical Physics Geant4 Tutorial at Jefferson Lab 10 July 2012 Dennis Wright (SLAC) Geant4 9.6 beta.
1 Tianchi Zhao University of Washington Concept of an Active Absorber Calorimeter A Summary of LCRD 2006 Proposal A Calorimeter Based on Scintillator and.
KR_SLAC_Jan031 Review of R&D carried out for MINOS active detector …………………………….. Keith Ruddick, University of Minnesota With particular emphasis on liquid.
EXL/crystal simulations B. Genolini Simulation of NUSTAR crystals with Litrani Presentation of Litrani: simulation of.
Report on SiPM Tests SiPM as a alternative photo detector to replace PMT. Qauntify basic characteristics Measure Energy, Timing resolution Develop simulation.
K1.8 meeting Report from E05 group Toshiyuki Gogami 26 Dec 2014.
Study of plastic scintillator quenching factors Lea Reichhart, IOP Glasgow, April /17.
Study of response uniformity of LHCb ECAL Mikhail Prokudin, ITEP.
Geometry of WLS bar + Fiber
1 Fast Timing via Cerenkov Radiation‏ Earle Wilson, Advisor: Hans Wenzel Fermilab CMS/ATLAS Fast Timing Simulation Meeting July 17,
Scintillation hodoscope with SiPM readout for the CLAS detector S. Stepanyan (JLAB) IEEE conference, Dresden, October 21, 2008.
Calorimeter technologies for forward region instrumentation K. Afanaciev 2, R. Dollan 1 V. Drugakov 2, C. Grah 1, E. Kouznetsova 1, W. Lange 1, W. Lohmann.
Electromagnetic Calorimeter for the CLAS12 Forward Detector S. Stepanyan (JLAB) Collaborating institutions: Yerevan Physics Institute (Armenia) James Madison.
T. Sugitate / Hiroshima / PHX031 / Nov.01 The Photon Spectrometer for RHIC and beyond PbWO 4 Crystal Density 8.29 g/cm 3 Radiation length 0.89 cm Moliere.
work for PID in Novosibirsk E.A.Kravchenko Budker INP, Novosibirsk.
V0L Hardware Status ALICE WEEK CERN, MARCH 2003 Ana Delia Becerril IFUNAM, México.
Review of GlueX FCAL Design Richard Jones, University of Connecticut GlueX collaboration meetingSept , Newport News as presented by Scott Teige,
V0, jyg, ALICE week, March Preparing for the V0 TDR (Lyon-Mexico project)  The V0 detector in 3 chapters  1 - Tests and simulations of detection.
Increase in Photon Collection from a YAP:Ce Matrix Coupled to Wave Lenght Shifting Fibres N. Belcari a, A. Del Guerra a, A. Vaiano a, C. Damiani b, G.
Systematic Studies of Small Scintillators for New Sampling Calorimeter E.P.Jacosalem, S.Iba, N.Nakajima, H.Ono, A.L.Sanchez, A.M.Bacala & H.Miyata GLD.
VVS Prototype Construction at Fermilab Erik Ramberg 26 February,2002 Design issues for VVS Details of VVS prototype design Schedule and Budget Testing.
DETECTOR TECHNOLOGIES
E. A. Albayrak, HCAL Meeting, Fermilab, Nov HE CALORIMETER DETECTOR UPGRADE R&D STATUS E. A. Albayrak for The University Of Iowa Fairfield University.
Quartz Plates R&D Status By F. Duru, S. Ayan, U. Akgun, J. Olson, Y. Onel The University Of Iowa V.Podrasky, C. Sanzeni, D.R.Winn Fairfield University.
SiPM for CBM Michael Danilov ITEP(Moscow) Muon Detector and/or Preshower CBM Meeting ITEP
MCP-PET: Geant4 Simulation Geometry Implementations 1. Similar to the last report (polished surface). Scintillator : LSO, LaBr3 # of layers : 5 -> 4 Area.
October,05 HCAL Meeting 10/15/05 Quartz Plate Simulation Studies Quartz Plate Simulation Status F. Duru, U. Akgun, A.S. Ayan, J. Olson, Y. Onel The University.
Xtal Calorimeter with Fiber Readout work by diploma student  Ralph Dollan (HU) Achim Stahl DESY Zeuthen 10.Oct.2003 LumiCal BeamCal.
TOF Reconstruction, Calibration & Test-beam Simulation Jiang Linli 2005/6/1 (13th BES Annual Meeting )
The Double Chooz Monte Carlo (selected topics !) Dario Motta (Irfu/SPP) Anatael Cabrera (APC)
1 Plannar Active Absorber Calorimeter Adam Para, Niki Saoulidou, Hans Wenzel, Shin-Shan Yu Fermialb Tianchi Zhao University of Washington ACFA Meeting.
Gamma Detector of Plastic Scintillator Oct. 2, 2009 IP-BSM Group 1.
Electromagnetic Calorimeter for HADES at SIS100 Pavel Tlustý, NPI Řež Motivation Plans Current status Tests Outlook HADES Collaboration Meeting, Sesimbra,
Photon Transport Monte Carlo September 27, 2004 Matthew Jones/Riei IshizikiPurdue University Overview Physical processes PMT and electronics response Some.
Status of NEWCHOD E.Guschin (INR), S.Kholodenko (IHEP), Yu.Kudenko (INR), I.Mannelli (Pisa), O.Mineev (INR), V.Obraztsov (IHEP), V.Semenov(IHEP), V.Sugonyaev.
Eli Piasetzky Tel Aviv University Beam Scintillating Fibers PSI, Technical Review, July 2012 Guy Ron Hebrew University Israel.
WP 22 – SciFi Development and Characterisation of Inorganic Scintillating Fibers Made of LuAG:Ce and LYSO:Ce S. Diehl 1, R. Novotny 1, Aubry Nicolas 2.
Positronium intensity measurement preparation SNU Bongho Kim.
Status Report of Tile Calorimeter at Korea Calorimeter meeting 2005/6/13 Youngdo Oh Kyungpook National University.
Focal Plane Scanner Jie Pan * + for the scanner working group Laura Cobus*, Anna Micherdzinska* Jeff Martin*, Peiqing Wang + * University of Winnipeg /
“Performance test of a lead glass
Detailed Simulation of Crystals short update
Simulation for DayaBay Detectors
Software development status in Rome
KM2A Electron Detector Optimization
CLAS12 Forward Detector Element PCAL
Geant4 Simulation :MCP PET
ELJEN TECHNOLOGY SCINTILLATOR AND GLUE
Physics III: Cuts, Decay and Optical Physics
Geant4: Electromagnetic Processes 3 V.Ivanchenko, BINP & CERN
Deng Ziyan Jan 10-12, 2006 BESIII Collaboration Meeting
Study of a Scintillating Digital Hadron Calorimeter Prototype
Geometry of WLS bar + Fiber
Chap. 6. Optical Properties
Presentation transcript:

Simulation of optical processes in GEANT4 Ralph Dollan DESY - ZEUTHEN

Outline First part Results of experiments to measure the lightyield of two different material samples Second part Simulations of the Photontransport in scintillator/leadglass samples and wavelenghtshifting fibers with GEANT4 19 September, 2018 R. Dollan

Longitudinal Segmentation Crystal cutted into segments in depth Optical isolated fibers Readout with photodetectors Material: radiationhard dense high lightyield Lightyield reduction due to fiber readout ? Crosstalk ? 19 September, 2018 R. Dollan

BICRON BCF-91A - Fibers BCF-91A: Λ(max. emission) = 494 nm -> QE(PMT-XP1911) 13 ± 2 % 19 September, 2018 R. Dollan

Experiment μ- Cosmic - Teleskop Absorber File ADC TDC Discriminator PMT - Signals Triggerlogic ADC TDC File 19 September, 2018 R. Dollan

Direct readout vs. fiber readout (BC-408) Absorber 19 September, 2018 R. Dollan

Experimental - Results Plastic Scintillator Leadglass Direct readout : (QEPMT 25 ± 1 %) Photoelectrons : 390 ± 50 p.e. / µ Lightyield : 1560 ± 260 photons / μ Direct readout : (QEPMT 15 ± 2 %) Photoelectrons : 18.2 ± 2.2 p.e. / µ Lightyield : 120 ± 30 photons / µ Fiber readout : (QEPMT 13 ± 2 %) Photoelectrons : 27 ± 4 p.e. / µ Lightyield : 210 ± 60 photons / μ Fiber readout : (QEPMT 13 ± 2 %) Photoelectrons : 2.4 ± 0.5 p.e. / µ Lightyield : 19 ± 7 photons / µ Lightyield reduced to 14 ± 4 % Lightyield reduced to 16 ± 7 % 19 September, 2018 R. Dollan

Simulation - Motivation To simulate the behavior of Scintillator-samples, optical processes provided by GEANT4 have to be understood: Scintillation Čerenkov radiation Transport of optical photons in the medium Reflection Scattering photons at material boundaries Absorption Reemission wavelength shifting 19 September, 2018 R. Dollan

Relevant processes for optical photons Geant4 source Cerenkov processes/electromagnetic/xray -> G4Cerenkov Scintillation processes/electromagnetic/xray -> G4Scintillation OpBoundary processes/optical -> G4OpBoundary OpAbsorption processes/optical -> G4OpAbsorption OpRayleigh processes/optical -> G4OpRayleigh OpWLS processes/optical -> G4OpWLS since GEANT4 6.0 (Transportation) 19 September, 2018 R. Dollan

Needed Material properties: atomic composition of the materials used refractive index absorption length (-spectrum) scintillation yield (slow/fast) scintillation time constant (slow/fast) absorption-, emission-spectra of WLS-materials time constants of WLS-materials Known: over all refractive index over all absorption length (rel. Emission-, Absorption spectrum) (scintillation yield) time constants 19 September, 2018 R. Dollan

Scintillation const G4int NUMENTRIES = 12; 19 September, 2018 G4double PhotonEnergy[NUMENTRIES] = { 3.44*eV, 3.26*eV, 3.1*eV, 3.02*eV, 2.95*eV, 2.92*eV, 2.82*eV, 2.76*eV, 2.7*eV, 2.58*eV, 2.38*eV, 2.08*eV }; G4double RINDEX_Bc408[NUMENTRIES] = { 1.58, 1.58, 1.58, 1.58, 1.58, 1.58, 1.58, 1.58, 1.58, 1.58, 1.58, 1.58 }; G4double ABSORPTION_Bc408[NUMENTRIES] = { 210*cm, 210*cm, 210*cm, 210*cm, 210*cm, 210*cm, 210*cm, 210*cm, 210*cm, 210*cm, 210*cm, 210*cm }; G4double SCINTILLATION_Bc408[NUMENTRIES] = { 0.04, 0.07, 0.20, 0.49, 0.84, 1.00, 0.83, 0.55, 0.40, 0.17, 0.03, 0 }; G4MaterialPropertiesTable *Bc408_mt = new G4MaterialPropertiesTable(); Bc408_mt->AddProperty("RINDEX", PhotonEnergy, RINDEX_Bc408, NUMENTRIES); Bc408_mt->AddProperty("ABSLENGTH", PhotonEnergy, ABSORPTION_Bc408, NUMENTRIES); Bc408_mt->AddProperty("FASTCOMPONENT", PhotonEnergy, SCINTILLATION_Bc408, NUMENTRIES); Bc408_mt->AddConstProperty("SCINTILLATIONYIELD",500./MeV); Bc408_mt->AddConstProperty("RESOLUTIONSCALE",1.0); Bc408_mt->AddConstProperty("FASTTIMECONSTANT", 1.*ns); //Bc408_mt->AddConstProperty("SLOWTIMECONSTANT",1.*ns); Bc408_mt->AddConstProperty("YIELDRATIO",1.); Bc408->SetMaterialPropertiesTable(Bc408_mt); 19 September, 2018 R. Dollan

WLS Absorptionlength from Code Hugh Gallagers Web Page (Tufts University), (Scintillator studies for the MINOS-Experiment) const G4int NUMENTRIES3 = 42; G4double PhotonEnergy_WLS_ABS_Bcf91a_core[NUMENTRIES3] = { 3.539*eV, 3.477*eV, 3.340*eV, 3.321*eV, 3.291*eV, 3.214*eV, 3.162*eV, 3.129*eV, 3.091*eV, 3.086*eV, 3.049*eV, 3.008*eV, 2.982*eV, 2.958*eV, 2.928*eV, 2.905*eV, 2.895*eV, 2.890*eV, 2.858*eV, 2.813*eV, 2.774*eV, 2.765*eV, 2.752*eV, 2.748*eV, 2.739*eV, 2.735*eV, 2.731*eV, 2.723*eV, 2.719*eV, 2.698*eV, 2.674*eV, 2.626*eV, 2.610*eV, 2.583*eV, 2.556*eV, 2.530*eV, 2.505*eV, 2.480*eV, 2.455*eV, 2.431*eV, 2.407*eV, 2.384*eV }; G4double WLS_ABSLENGTH_Bcf91a_core[NUMENTRIES3] = { 0.28*cm, 0.28*cm, 0.26*cm, 0.25*cm, 0.24*cm, 0.21*cm, 0.19*cm, 0.16*cm, 0.13*cm, 0.13*cm, 0.14*cm, 0.11*cm, 0.08*cm, 0.05*cm, 0.02*cm, 0.05*cm, 0.08*cm, 0.10*cm, 0.13*cm, 0.10*cm, 0.08*cm, 0.07*cm, 0.08*cm, 0.11*cm, 0.13*cm, 0.16*cm, 0.19*cm, 0.21*cm, 0.24*cm, 0.27*cm, 0.30*cm, 2.69*cm, 3.49*cm, 3.99*cm, 5.00*cm, 11.6*cm, 21.6*cm, 33.1*cm, 175*cm, 393*cm, 617*cm, 794*cm }; const G4int NUMENTRIES2 = 24; G4double PhotonEnergy_WLS_EM_Bcf91a_core[NUMENTRIES2] = { 2.69*eV, 2.67*eV, 2.66*eV, 2.64*eV, 2.63*eV, 2.61*eV, 2.58*eV, 2.56*eV, 2.55*eV, 2.53*eV, 2.50*eV, 2.48*eV, 2.46*eV, 2.45*eV, 2.44*eV, 2.43*eV, 2.41*eV, 2.37*eV, 2.33*eV, 2.25*eV, 2.24*eV, 2.19*eV, 2.15*eV, 2.08*eV }; G4double WLS_EMISSION_Bcf91a_core[NUMENTRIES2] = {0, 0.02, 0.09, 0.20, 0.29, 0.40, 0.59, 0.70, 0.80, 0.89, 1.00, 0.96, 0.88, 0.79, 0.69, 0.59, 0.50, 0.40, 0.31, 0.22, 0.19, 0.10, 0.06, 0 }; 19 September, 2018 R. Dollan

Geometry WLS Fiber Scintillator sample Air gap Tyvek wrapping 19 September, 2018 R. Dollan

Frontview Fiber diameter: 1mm, Cladding thickness: 3% of core Ø Channel: 1mmx1mm Fiber core: Polystyrene, n=1.6 Fiber cladding: Acrylic, n=1.49 Optical glue: Epoxy, n=1.56 Scintillator: Polyvinyltoluene, n=1.58 19 September, 2018 R. Dollan

Sideview, both sides open 19 September, 2018 R. Dollan

Sideview, one side open 19 September, 2018 R. Dollan

Front view - Photons in the Fiber Scintillation yield ~5 0/MeV 19 September, 2018 R. Dollan

PMT positions Directly attached Directly attached to fiber surface to scintillator sample PMT Window: Ø 15 mm, thickness 2mm Short absorptionlength -> all photons absorbed 19 September, 2018 R. Dollan

Bc_direct_3a 19 September, 2018 R. Dollan

Bc_fiber_3a 19 September, 2018 R. Dollan

Bc_direct_3a_pmt 19 September, 2018 R. Dollan

Bc_fiber_3a_pmt 19 September, 2018 R. Dollan

Lg_direct 19 September, 2018 R. Dollan

Lg_fiber 19 September, 2018 R. Dollan

Lg_direct_pmt 19 September, 2018 R. Dollan

Lg_fiber_pmt 19 September, 2018 R. Dollan

Simulation - Results Plastic Scintillator Leadglass (exp.): Lightyield reduced to 14 ± 4 % (exp.): Lightyield reduced to 16 ± 7 % (sim.): Lightyield reduced to 9.3 – 9.8 % (sim.): Lightyield reduced to 8.3 - 12 % 19 September, 2018 R. Dollan

This is a first look – can be improved !!! Summary This is a first look – can be improved !!! for a first naive look – nice agreement between exp. and sim. results For a realistic Simulation: implementation of realistic boundary and surface conditions of the materials/samples exact WLS-Absorption spectrum good knowledge of Absorption-, Emission behaviour of the materials material composition data these simulation studies continue V. Drugakov –> Simulation of a block of crystals 19 September, 2018 R. Dollan