The Lightest Higgs Boson of mSUGRA, mGMSB and mAMSB:

Slides:



Advertisements
Similar presentations
26th Rencontres de Blois, Particle Physics and Cosmology, 2014 BSM Higgs Searches at the LHC C. H. Shepherd-Themistocleous PPD, Rutherford Appleton Laboratory.
Advertisements

Outlook: Higgs, SUSY, flavor Ken-ichi Hikasa (Tohoku U.) Fourth Workshop, Origin of Mass and SUSY March 8, 2006, Epochal Tsukuba.
Probing SUSY with Higgs and B physics at the Tevatron and the LHC Marcela Carena Theoretical Physics Department, Fermilab D. Garcia, U. Nierste and C.
Higgs Boson Mass In Gauge-Mediated Supersymmetry Breaking Abdelhamid Albaid In collaboration with Prof. K. S. Babu Spring 2012 Physics Seminar Wichita.
Nordic LHC Physics Workshop Stockholm Nov MSSM Higgs Searches at LEP Tord Ekelöf Uppsala University.
Neutralino Dark Matter in Light Higgs Boson Scenario Masaki Asano (ICRR, University of Tokyo) Collaborator S. Matsumoto (Toyama Univ.) M. Senami (Kyoto.
Comprehensive Analysis on the Light Higgs Scenario in the Framework of Non-Universal Higgs Mass Model M. Asano (Tohoku Univ.) M. Senami (Kyoto Univ.) H.
3.Phenomenology of Two Higgs Doublet Models. Charged Higgs Bosons.
Predictions of the MSO 10 SM : dark matter and more … Stuart Raby Bonn, Germany August 29, 2005 COSMO 05 w/ R. Dermisek, L. Roszkowski & R.R, de Austri.
Minimal Supersymmetric Standard Model (MSSM) SM: 28 bosonic d.o.f. & 90 (96) fermionic d.o.f. SUSY: # of fermions = # of bosonsN=1 SUSY: There are no particles.
Jose E. Garcia presented by: Jose E. Garcia (IFIC-Valencia) on behalf of ATLAS Collaboration XXXIXth Rencontres de Moriond.
Higgs and SUSY at the LHC Alan Barr on behalf of the ATLAS and CMS collaborations ICHEP-17 Aug 2004, Beijing ATLAS.
Discovery Potential for MSSM Higgs Bosons with ATLAS Johannes Haller (CERN) on behalf of the ATLAS collaboration International Europhysics Conference on.
Lausanne 02/03/2001 A.Jacholkowska1 Supersymmetric Higgs(es) in LHC(b) Agnieszka Jacholkowska 2 nd Generator Workshop Lausanne 02/03/2001.
Mitsuru Kakizaki (University of Toyama)
As a test case for quark flavor violation in the MSSM K. Hidaka Tokyo Gakugei University / RIKEN, Wako Collaboration with A. Bartl, H. Eberl, E. Ginina,
What is mSUGRA? Physics in Progress, seminar talk, 11 th Feb 2010 Helmut Eberl.
Reconstruction of Fundamental SUSY Parameters at LHC and LC
Center for theoretical Physics at BUE
Supersymmetric Models with 125 GeV Higgs Masahiro Yamaguchi (Tohoku University) 17 th Lomonosov Conference on Elementary Particle Physics Moscow State.
 CP Conserving (CPC) Benchmark Scenarios  Discovery Potential in CPC scenarios  Discrimination SM or Beyond  The CP Violating CPX Scenario  Discovery.
Oct, 2003WIN'03, Katri Huitu1 Probing the scalar sector with ZZH outline: Introduction Models: higher representations radion (nonSUSY/SUSY) Conclusions.
Neutralino Dark Matter in Light Higgs Boson Scenario (LHS) The scenario is consistent with  particle physics experiments Particle mass b → sγ Bs →μ +
Pamela Ferrari0 0 Recontres de Moriond ‘05 QCD and Hadronic interactions QCD and Hadronic interactions Recontres de Moriond-La Thuille March 2005.
1 Supersymmetry Yasuhiro Okada (KEK) January 14, 2005, at KEK.
Low scale supergravity mediation in brane world scenario and hidden sector phenomenology Phys.Rev.D74:055005,2006 ( arXiv: hep-ph/ ) ACFA07 in Beijing:
X ± -Gauge Boson Production in Simplest Higgs Matthew Bishara University of Rochester Meeting of Division of Particles and Fields August 11, 2011  Simplest.
1 Prospect after discoveries of Higgs/SUSY Yasuhiro Okada (KEK) “Discoveries of Higgs and Supersymmetry to Pioneer Particle Physics in the 21 st Century”
Supersymmetry Basics: Lecture II J. HewettSSI 2012 J. Hewett.
The Search For Supersymmetry Liam Malone and Matthew French.
Monday, Apr. 7, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #20 Monday, Apr. 7, 2003 Dr. Jae Yu Super Symmetry Breaking MSSM Higgs and Their.
Impact of quark flavour violation on the decay in the MSSM K. Hidaka Tokyo Gakugei University / RIKEN, Wako Collaboration with A. Bartl, H. Eberl, E. Ginina,
DIS2003 A.Tilquin Searches for Physics Beyond the Standard Model at LEP What is the Standard Model Why to go beyond and how Supersymmetry Higgs sector.
Z’ Signals from KK Dark Matter Sabine Riemann (DESY) LCWS, Stanford, March 18-22, 2005 Outline  Universal extra dimensions (UED)  KK dark matter?  Sensitivity.
Elba -- June 7, 2006 Collaboration Meeting 1 CDF Melisa Rossi -- Udine University On behalf of the Multilepton Group CDF Collaboration Meeting.
We have the Higgs!!! Now What?? Nausheen R. Shah Wayne State University Oct 14, 2015 In Collaboration with: M. Carena, H. Haber, I. Low & C. Wagner arXiv:1510.xxxxx.
ATLAS UK Physics meeting
125 GeV Higgs and BSM physics
ONE-PARAMETER MODEL FOR THE SUPERWORLD
Polarization effects in slepton production at hadron colliders
Polarization effects in slepton production at hadron colliders
The two-Higgs-doublet model implementation in MadGraph v4
Dark Matter Phenomenology of the GUT-less CMSSM
Phenomenology of Twin Higgs Model
Hunting the Last Missing Particle of the Standard Model
Diffraction at LHC, Tevatron and HERA
NMSSM & B-meson Dileptonic Decays
Finish off Higgs reach at Tevatron and CMS
Phenomenology of Twin Higgs Model
Phenomenology of Twin Higgs Model
The Constrained E6SSM TexPoint fonts used in EMF.
Searching for SUSY in B Decays
New Physics from B decays
Testing the Standard Model and Beyond
Phenomenology of Twin Higgs Model
Yasuhiro Okada (KEK/Sokendai) October 18, 2007
Physics at a Linear Collider
非最小超对称唯象研究: 工作汇报 杨 金 民 中科院 理论物理所 南开大学.
CEPC-Physics Workshop
Yasuhiro Okada (KEK) FPCP 2004, Deagu, Korea October 7, 2004
Physics beyond the SM in Kaon decays --Theory--
Analysis of enhanced effects in MSSM from the GUT scale
Relic density : dependence on MSSM parameters
Associated production of Higgs boson with μ+μ - at CEPC
SUSY and B physics observables
SUSY parameter determination at LHC and ILC
Inclusive Measurements as an mSUGRA Signal with ATLAS
Benchmarks for Charged Higgses
Prospect after discoveries of Higgs/SUSY
Presentation transcript:

The Lightest Higgs Boson of mSUGRA, mGMSB and mAMSB: Observability and Precision Analyses at Present and Future Colliders Shufang Su • U. of Arizona A. Dedes, S. Heinemeyer, SS G. Weiglein, hep-ph/0302174

Motivation LEP results on Higgs searches - LEP results on Higgs searches 95% CL mHSM  114.4 GeV , 1.7  mHSM  116 GeV MSSM light Higgs boson h0 mh  135 GeV Higgs searches soft SUSY-breaking parameters MSSM: 105 new SUSY breaking parameters out of control mechanism for SUSY breaking: (flavor blind) predictive, relate Higgs sector to other SUSY particles low energy MSSM (visible sector) 105 parameters SUSY-breaking (hidden sector) a few parameters gauge-mediated SUSY breaking (GMSB) gauge interaction gravity gravity-mediated SUSY breaking (SUGRA) anomaly-mediated SUSY breaking (AMSB) anomaly something S. Su ASBSII

Goal Individual analysis for each scenario and MSSM exists - Individual analysis for each scenario and MSSM exists (lots of references … ) We treat three soft SUSY-breaking scenarios equal allow a direct comparison of results/phenomenology Previous analyses All parameters except one (e.g. mA) kept fixed complete knowledge of SUSY parameters unrealistic enhancement of sensitivity Our analyses: mSUGRA, mGMSB, mAMSB Vary all high-energy input parameters Combine with mA/other SUSY particle mass from LHC J.A. Bagger, K. Matchev, D.M. Pierce, R. zhang, phys. Rev. D 55 (1997) 3188 K.T. Matchev, D.M. Pierce, phys. Lett. B 445 (1999) 331 W. de Boer, hep-ph/9808448 T.A. Kaeding, S. Nandi, hep-ph/9906342 S. Su, Nucl. Phys. B 573 (2000) 87 A. Dedes, S. Heinemeyer, P. Teixeira-Dias, G. Weiglein, Jour. Phys. G 26 (2000) 582 B. Allanach, A. Dedes, JHEP 0006 (2000) 017 S. Ambrosanio, S. Heinemeyer, G. Weiglein, hep-ph/0002191, hep-ph/0005142 J. Ellis, G. Ganis, D.V. Nanopoulos, K.A. Olive, Phys. Lett B 502 (2001) 171 A. Djouadi, M. Drees, J. Kneur, JHEP 0108 (2001) 055 J. Ellis, S. Heinemeyer, K. Olive, G. Weiglein, Phys. Lett. B 515 (2001) 348, JHEP 0301 (2003) 006 J. Guasch, W. Hollik, S. Penaranda, Phys. Lett. B 515 (2001) 367 M. Carena, H. Haber, H. Logan, S. Mrenna, Phys. Rev. D 65 (2002) 055005 S. Dawson, S. Heinemeyer, Phys. Rev. D 66 (2002) 055002 S. Su ASBSII

Outline Introduction Procedure and additional constrains - Introduction MSSM Higgs sector soft SUSY-breaking scenario: mSUGRA, mGMSB, mAMSB Procedure and additional constrains Observability of h0 at current and future colliders Precision analyses of h0 decay branching ratio Deviations in mSUGRA, mGMSB, mAMSB Bounds on mA and high-energy input parameters Distinguish three SUSY-breaking scenarios Conclusions S. Su ASBSII

MSSM Higgs sector Two Higgs doublet Higgs potential - Two Higgs doublet Higgs potential Electroweak symmetry breaking ||, b are replaced by mZ, tan= v2/v1 Physical states: h0,H0,A0,H, Goldstone bosons: G0,G S. Su ASBSII

Measurement of Higgs masses and couplings CP-even Higgs h0,H0 - In the 10-20 basis Mass matrix mA2=2b/sin 2 Tree level mh < |cos 2|mZ < mZ loop contribution to mh from t-t sector (dominant)  (G.Degrassi, S.Heinemeyer, W.Hollik, P.Slavich and G.Weiglein ’02) Two loop calculation: mh  135 GeV Measurement of Higgs masses and couplings information about soft SUSY-breaking parameters S. Su ASBSII

Present status of mh prediction in MSSM -  Used for LEP analysis until 1999 RG improved one-loop effective potential results Leading logs at two-loop level program: subhole (M. Carena, M. Quiros, C. Wagner ’95)  Used since end of 1999 Feynman-diagrammatic two-loop results Complete one-loop + dominant two-loop corrections program: FeynHiggs (S. Heinemeyer, W. Hollik, G. Weiglein ’98,’00,’01) Remaining theoretical uncertainties in mh prediction Unknown higher-order corrections  mh  3 GeV - Uncertainties in input parameters mt,…,mA,tan,mt1,mt2,t,mg mt  5 GeV  mh  5 GeV  (G.Degrassi, S.Heinemeyer, W.Hollik, P.Slavich and G.Weiglein ’02) Precise knowledge of mt is important S. Su ASBSII

FD approach of MSSM Higgs sector - Most relevant parameters for MSSM Higgs sector: mA, tan, mt1, mt2, t, mb1, mb2, b, , mg, M1, M2.  Use FD approach within on-shell renormalization scheme mh, mH given by poles of the h0-H0 propagator matrix Effective mixing angle eff Fortran code: FeynHiggs www.feynhiggs.de S. Su ASBSII

Minimal Super Gravity mediated SUSY-breaking (mSUGRA) { m0, m1/2, A0, tan, sign  } m0 : common scalar mass at GUT scale m1/2 : common gaugino mass at GUT scale A0 : common trilinear scalar coupling at GUT scale tan : low energy input sign  : low energy input S. Su ASBSII

Minimal Gauge mediated SUSY-breaking (mGMSB) SUSY breaking is mediated by SM gauge interactions through messenger sector { Mmess, Nmess, , tan, sign  } Mmess : messenger mass scale Nmess : messenger index  : soft SUSY-breaking mass scale S. Su ASBSII

Minimal Anomaly mediated SUSY-breaking (mAMSB) SUSY breaking on a separate brane is communicated to the visible sector via super-Weyl anomaly { maux, m0, tan, sign  } maux : SUSY breaking scale (gravitino mass) m0 : additional mass scale for scalar (to keep ml > 0 )  S. Su ASBSII

High-energy parameters in mSUGRA, mGMSB, mAMSB Procedure - High-energy parameters in mSUGRA, mGMSB, mAMSB RG running Further constraints EW precision data, non-observation of SUSY particles, etc. Low-energy parameters FeynHiggs (FD approach) h0 production and decay Constraints on mA,tan ... Precision measurements of h0 decay at LC and C Distinguish three scenarios Observability at Tevatron and LHC S. Su ASBSII

High-energy input parameter mSUGRA mGMSB mAMSB 50 GeV m0 1 TeV 10 TeV  200 TeV 20 TeV maux 100 TeV 50 GeV m1/21 TeV 1.01  Mmess105  0 m0 2 TeV -3 TeV A0 3 TeV 1 Nmess 8 1.5 tan 60 1.5 tan 55 sign = + 1 Positive : favored by g-2 and BR(b ! s ) S. Su ASBSII

Additional constraints - LEP Higgs exclusion bounds Precision observable:  SUSY  3  10-3 Experimental bounds on SUSY particle masses mt=175 GeV (mh/ mt = 1 GeV/1 GeV) No SUSY CP-violating phases R-parity conserved Success REWSB No color/charge breaking minima LSP uncolored and uncharged (neutralino LSP in mSUGRA and mAMSB) Restrict to positive : favored by g-2 and Br(b ! s ) S. Su ASBSII

Previous work LEP Higgs searches : exclusion region in mh0-tan S. Ambrosanio, A. Dedes, S. Heinemeyer, SS, G. Weiglein NPB 624, 3 (2002) LEP Higgs searches : exclusion region in mh0-tan Slight excess of 116 GeV Higgs interpreted as light CP-even Higgs with SM-like coupling corresponding SUSY particle spectrum Strong enhancement of b, Yukawa coupling » sineff / cos  small mA, large tan Strong suppression of h ! bb,  possible in mSUGRA MSSM SUGRA GMSB AMSB mh0max (GeV) 135 127 123 125 tanmin 0.5 or 2.4 2.9 3.1 3.8 S. Su ASBSII

Higgs production and decay - Tevatron qq!V!Vh (V=W,Z) LHC gg!h qq,gg!tt!tth VV!h LC e+e-!Z!Zh C !h (h! bb,cc,+-,+-): higher-order correction included (h ! ,gg,WW): Hdecay (A.Djouadi, J.Kalinowski, M.Spira, ’97-’03) S. Su ASBSII

Channels for Higgs study - Higgs boson decay Higgs study channels Tevatron qq ! V ! Vh ! Vbb (V=W,Z) LHC gg ! h ! , VV ! h ! +-, WW*,  qq,gg ! tt ! tth ! ttbb LC e+e- ! Z ! Zh ! Zbb,Zcc,Z+-,ZWW*,Zgg WW! h ! bb,cc,+-,WW*,gg C  ! h ! bb, WW*,  S. Su ASBSII

Observability of h0 Tevatron LHC V ! Vh ! Vbb suppressed mGMSB - Tevatron V ! Vh ! Vbb suppressed not more than 10% discovery potential as good as SM Higgs LHC mGMSB 10 30 40 50 20 1000 1400 600 200 1800 mA (GeV) tan gg ! h !  suppression of 50% or more 10 30 40 50 20 1000 1400 600 200 1800 mA (GeV) tan mAMSB mSUGRA 10 30 40 60 50 20 1000 1400 600 200 1800 mA (GeV) tan < 10% (mSUGRA, mGMSB) upto 20% (mAMSB) 10-20% (mSUGRA, mGMSB) < 10% (mAMSB) S. Su ASBSII

Observability of h0 (cont’) - LHC qq,gg ! tt ! tth ! ttbb suppressed no more than 10% VV ! h (Plehn, Rainwater, Zeppenfeld ’99, ’00) mSUGRA mGMSB, mAMSB WW ! h ! +- differ < 10% enhanced everywhere small mA, large tan suppression no suppression WW ! h ! WW*,  suppression at small mA LC easily observable even with strong suppression S. Su ASBSII

Observability of h0 (cont’) - C mSUGRA mGMSB, mAMSB  ! h ! bb, +- small suppression/ enhancement always enhanced very large tan suppression no suppression  ! h ! WW*,  suppression > 20% suppression > 50% mGMSB mAMSB 50 50 40 40 tan  30 tan  30 20 20 10 10  ! h !  400 800 1200 1600 400 800 1200 1600 S. Su ASBSII mA (GeV) mA (GeV)

Precision analyses of Higgs coupling - concentrate on LC and C focus on Higgs sector Anticipated precision h ! bb 1.5% h ! +- 4.5% LC h ! cc 6% h ! gg 4% h ! WW* 3% 2% C 5% h !   11% direct detection of A0 difficult deviation from SM Higgs coupling  indirect bound on mA differ from previous analyses - all but one parameter kept fixed require knowledge of SUSY parameters - scan over parameter space reduced sensitivity “worst case” scenario § n: § n £ precision S. Su ASBSII

Sensitivity in mA-tan plane mSUGRA LC: h! WW* 1 mA  500 GeV 3 mA  550 GeV 2 mA  700 GeV 1 mA  1000 GeV suppression in h! bb, +- enhancement in h! cc, WW*  35  tan  55 sensitivity in C slightly worse S. Su ASBSII

Sensitivity in mA-tan plane (cont’) mAmax (GeV) -1 -2 -3 mSUGRA 1000 700 550 mGMSB 1150 750 600 mAMSB 1300 850 LC: h ! WW* no enhancement mGMSB 10 30 40 50 20 1000 1400 600 200 1800 mA (GeV) tan 10 30 40 50 20 1000 1400 600 200 1800 mA (GeV) tan mAMSB S. Su ASBSII

Sensitivity to high-energy parameters mSUGRA mild bound on m0 stronger bound on m1/2 3 7 9 10£ 104 5 1000 1400 600 200 1 1800 m0 (GeV) maux mAMSB VVh!cc mSUGRA -1  -2  -3  m1/2max (GeV) 650 450 350 mGMSB deviation from SM coupling not sufficient to constrain Mmess and  small deviation  lower bound on Mmess and  mAMSB 2 , 3  deviation wide range of m0 and maux mAMSB 2  3  m0max (GeV) 1400 1100 mauxmax (GeV) 7.5£104 6£104 S. Su ASBSII

Distinguish SUSY Breaking Scenario - 500 GeV  mA  600 GeV tan  30 AMSB GMSB SUGRA if we know ranges of mA, tan from LHC if we see deviations of coupling at LC Can we distinguish various SUSY breaking scenario? 800 GeV  mt1  900 GeV ~ 900 GeV  mg  1000 GeV ~ Yhbb » sineff/cos 12 ! eff mSUGRA large and negative mGMSB small mAMSB large and positive S. Su ASBSII

Conclusion Investigate relevant production and decay channels of h0 - Investigate relevant production and decay channels of h0 - Tevatron, LHC, LC and C -mSUGRA, mGMSB and mAMSB Observability - Tevatron: as good as SM Higgs; LC: ensured - LHC: gg ! h ! , C: h ! WW*, , small mA, large tan problematic (mGMSB, mAMSB) Precision measurement of BR at LC and C bound on mA and tan: mA<1 TeV for 2-3  deviation - biggest sensitivity from LC: h ! WW*, cc - suppression in h ! bb, +-, enhancement in h ! cc, WW*  35  tan  55 (mSUGRA) bound on high-energy input parameters - m1/2 (mSUGRA), m0 (mAMSB) Distinguish different SUSY breaking scenarios S. Su ASBSII