Theoretical aspects of exotic hadrons

Slides:



Advertisements
Similar presentations
Diquarks in heavy baryons Atsushi Hosaka (RCNP, Osaka U. ) 9/10-13, 2013Charmed baryons1 Practical questions of hadron physics How ground and excited states.
Advertisements

Heavy quark spectroscopy and accurate prediction of b-baryon masses in collaboration with Marek Karliner, B. Keren-Zur and J. Rosner H.J. Lipkin.
CERN-07 SHLee 1 Heavy Exotic Particle Production from HIC at LHC Su Houng Lee Yonsei Univ., Korea with Shigehiro Yasui, Wei Liu, Che-Ming Ko.
Exotic hadrons with heavy quarks May. Shigehiro Yasui KEK.
Su Houng Lee 1. Hadrons with one heavy quark 2. Multiquarks with one heavy quark 3. Quarkonium Arguments based on two point function  can be generalized.
Su Houng Lee 1. Mesons with one heavy quark 2. Baryons with one heavy quark 3. Quarkonium Arguments based on two point function  can be generalized to.
Istanbul06 S.H.Lee 1 1.Introduction 2.Theory survey 3.Charmed Pentaquark 4.Charmed Pentaquark from B decays Hadron spectroscopy, Heavy pentaquark, and.
Su Houng Lee – (ExHIC coll.) 1. Recent findings of “Multiquark states” 2. Statistical vs Coalescence model for hadron production 3. Exotic production in.
Su Houng Lee – (ExHIC coll.) 1. Recent findings of “Multiquark states” + several comments 2. Statistical vs Coalescence model for hadron production 3.
New Frontiers in QCD, October 28th, 2011 Based on K. Kim, D. Jido, S.H. Lee PRC 84(2011) K. Kim, Y. Kim, S. Takeuchi, T. Tsukioka PTP 126(2011)735.
Masayasu Harada (Nagoya Univ.) based on M.H., M.Rho and C.Sasaki, Phys. Rev. D 70, (2004) M.H., Work in progress at “Heavy Quark Physics in QCD”
Few ideas on Hadronic Physics at RHIC/LHC
EXOTIC MESONS WITH HIDDEN BOTTOM NEAR THRESHOLDS D2 S. OHKODA (RCNP) IN COLLABORATION WITH Y. YAMAGUCHI (RCNP) S. YASUI (KEK) K. SUDOH (NISHOGAKUSHA) A.
Sigma model and applications 1. The linear sigma model (& NJL model) 2. Chiral perturbation 3. Applications.
Quark dynamics studied in charmed baryons April 20, 2015ASRC Seminar1 Atsushi Hosaka, RCNP, Osaka ASRC Seminar Contents 1. Introduction 2. Structure: How.
1 The theoretical understanding of Y(4260) CONG-FENG QIAO Graduate School, Chinese Academy of Sciences SEPT 2006, DESY.
Istanbul 06 S.H.Lee 1 1.Introduction on sQGP and Bag model 2.Gluon condensates in sQGP and in vacuum 3.J/  suppression in RHIC 4.Pertubative QCD approach.
Molecular Charmonium. A new Spectroscopy? II Russian-Spanish Congress Particle and Nuclear Physics at all Scales and Cosmology F. Fernandez D.R. Entem,
Alice Workshop in Seoul Hideyuki Obayashi. 内容 日程・場所 FCal の紹介 Di-baryon の検出可能性について まとめ.
HIM SHLee 1 1.Introduction for Exotics 2.Hadron production in HIC 3.Exotics from RHIC Hadron Physics at RHIC Su Houng Lee Yonsei Univ., Korea Thanks.
S-Y-05 S.H.Lee 1 1.Introduction 2.Theory survey 3.Charmed Pentaquark 4.Charmed Pentaquark from B decays Physics of Pentaquarks Su Houng Lee Yonsei Univ.,
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
X(3872) production in high energy collisions University of São Paulo F.S. Navarra Introduction : exotic hadrons Production in pp and AA XIII International.
Nov. 12, HAPHY. A QCD sum rule analysis of the PLB 594 (2004) 87, PLB 610 (2005) 50, and hep-ph/ Hee-Jung Lee Vicente Vento (APCTP & U. Valencia)
Korea-EU Alice 2004 Su Houng Lee Hungchong Kim, Taesoo Song, Yongjae Park, Yongshin Kwon (Osaka), Youngsoo Son, Kyungchul Han, Kyungil Kim Nuclear and.
1 Heavy quark system in vacuum and in medium Su Houng Lee In collaboration with Kenji Morita Also, thanks to group members: Present: T. Song, K.I. Kim,
Production rates of Strange and Charmed baryons at Belle 1  s = GeV Nuclear physics consortium.
I=1 heavy-light tetraquarks and the Υ(mS) → Υ(nS)ππ puzzle Francisco Fernández Instituto de Física Fundamental y Matemáticas University of Salamanca.
1 Heavy quark system near Tc Su Houng Lee In collaboration with Kenji Morita Also, thanks to group members: Present: T. Song, K.I. Kim, W.S. Park, H. Park,
High Density Matter and Searches for Huan Z. Huang Department of Physics and Astronomy University of California, Los Angeles The STAR Collaboration.
1 Hadron Physics at RHIC Su Houng Lee 1. Few words on hadronic molecule candidates and QCD sum rules 2. Few words on diquarks and heavy Multiquark States.
Qiang Zhao Theory Division Institute of High Energy Physics Chinese Academy of Sciences 第十届全国粒子物理学术会议,南京, 2008 年 4 月 日 Search for Z(4430) in meson.
Stephen Lars Olsen Seoul National University February 10, 2014 A New Spectroscopy of Hadrons High-1 Gangwando.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
1 Heavy multiquark systems from heavy ion collisions Su Houng Lee 1. Few words on light Multiquark States and Diquarks 2. Few words on heavy Multiquark.
Chiral Approach to the Phi Radiative Decays and the Quark Structure of the Scalar Meson Masayasu Harada (Nagoya Univ.) based HEP-Nuclear Physics Cross.
Su Houng Lee – (ExHIC coll.) 1. Few words on recent observations of Multiqaurk states 2. Particle production in Heavy Ion Collision 3. Exotica from Heavy.
Su Houng Lee 1. Statistical vs Coalescence model for hadron/nuclei yield 2. Few random comments with Bag model and multiquark 3. Multiquark states from.
The quark model FK7003.
Low energy scattering and charmonium radiative decay from lattice QCD
Hadron Physics at Belle
Tcc and double charm production
Institute of High Energy physics KEK, Hadron physics at J-PARC, Japan
Doubly charmed mesons from hadronic molecules
Exotica production from ExHIC Su Houng Lee – (ExHIC coll.)
P. Gubler, T.T. Takahashi and M. Oka, Phys. Rev. D 94, (2016).
Exotic mesons in holographic QCD
Structure of Mass Gap Between Two Spin Multiplets
A novel probe of Chiral restoration in nuclear medium
E. Wang, J. J. Xie, E. Oset Zhengzhou University
Heavy quark spectroscopy and accurate prediction of b-baryon masses
Heavy quark spectroscopy and prediction of bottom baryon masses
Remarks on the hidden-color component
Charm spectroscopy 1 A. Drutskoy University of Cincinnati
Scalar Meson σ(600) in the QCD Sum Rule
Physics Opportunities with heavy quark system at FAIR
Possible Interpretations of DsJ(2632)
Exotic charmed four-quark mesons: molecules versus compact states
Section IX - Quark Model of Hadrons
Charmonium spectroscopy above thresholds
Chiral Structure of Hadronic Currents
Theoretical review of excited D*/Ds* mesons
Spin-singlet Quarkonia at the LHC
Nuclear Physics Group and IUFFyM University of Salamanca
Understanding DsJ*(2317) and DsJ(2460)
Could there be a more direct proof of multiquark configuration?
Mitja Rosina THE BINDING ENERGY OF THE Ξcc++ BARYON
Heavy quark exotica and heavy quark symmetry
Edward Shuryak Stony Brook
Theory on Hadrons in nuclear medium
Presentation transcript:

Theoretical aspects of exotic hadrons Su Houng Lee 1. Few words on hadronic molecule candidates 2. Few words on diquarks and heavy Multiquark States 3. Summary of disucssions

Recent Highlights in Hadron Physics – Heavy quark sector Babar: DSJ(2317) 0+ Puzzle in Constituent Quark Model(2400) D0 K+ (2358) threshold effect Chiral partner of (0- 1-) Tetraquark molecule ? D0 D* D1 1864 2007 2420 D0+D* D*+D* D+D1 D1+D* 3871 4014 4284 4427 X(3872) , Y(4260), Z(4430)  y’p Z(4051),Z(4248) cc1p Must contain cc ?

N S Previous Work on Multiquark hadrons - Light quark sector + Scalar tetraquark (Jaffe 76) L(1405) (Jido, Sekihara..) N S K + p Search for H dibaryon Search for Q+ pentaquark The experimental observations completes the observation of scalar nonets, that posses the inverted mass spectrum and consequently the implicit multiquark nature of the scalar nonet. Tetraquarks were introduced by Jaffe, as a natural extension of the bag model, and to explain the anomalously large scalar meson mass, which are naturally explained if one assumes a hidden ssbar quark. The question of whether the scalar nonnet is a tetraquark is still an ongoing heated discussion.

New perspectives on hadron physics from RHIC large number of c , b quark production Vertex detector: weakly decaying exotics Larger source size: A. Ohnishi .. particle H f0 a0 Ds0 X(3872) L(1405) correlation L L K+ K- D0 K+ D0 D0* P K-

Some insights from for Multiquark configurations in a schematic quark model

Color spin interaction Diquark configurations vs. quark-antiquark configurations q1 q2 q2 q4 Color Spin Favor D Q-Q 3bar -2 1 6 2/3 -1/3 There are several advantages in applying this formalism to heavy quark system. Color Spin Favor D Q-Qbar 1 1,8 -4 4/3 8 1/2 -1/6 Takeuchi

Diquark inside Baryons Example u d u d s s Mass diff MD –MN MS-ML MSc-MLc MSb-MLb Formula 290 MeV 77 MeV 154 MeV 180 MeV Experiment 75 MeV 170 MeV 192 MeV

quark antiquark in Meson p r d u d u Mass diff Mr –Mp MK*-MK MD*-MD MB*-MB Formula 635 MeV 381 MeV 127 MeV 41 MeV Experiment 397 MeV 137 MeV 46 MeV Works very well with 3x CB = CM = 635 mu2 u d x 3 =

Q+ in a naïve quark model S=C=0 (ud)  -A S=-1, ms=5/3mu (us)  -3/5 A (ds)  -3/5 A C=1, mc=5mu (uc)  -1/5 A (dc)  -1/5 A (sc)  -3/25 A L=1 Q+ P K u d u d  u d s d 1/2+ u s L2 contribution - 500 MeV in Full quark model by Hiyama, Hosaka et al Q+ 1540 can not be a pentaquark state, if it exists ?

can L(1405) be a 5 quark state L S p  1/2+ S=C=0 (ud)  -A S=-1, ms=5/3mu (us)  -3/5 A (ds)  -3/5 A C=1, mc=5mu (uc)  -1/5 A (dc)  -1/5 A (sc)  -3/25 A L S p u d s d  u d u d 1/2+ s d L 1405 can not be a pentaquark state, ?

Di-bayron (Conf 1) – (qq) (qq) (qq) H di-baryon u d u d u d u s  0+ CFL Phase of color superconductivity ? 2SC Phase s s d s H di-baryon  could be bound unfortunately not found in so far

Stable Multiquark configurations in a schematic diquark model

Type of diquark and its q-q binding Multiquark configuration: Yasui, Ko, Lee (EJP08,EJP09) Diquark attracation vs quark-antiquark q1 q3 q2 diquark picture: Yasui, Ko, Liu, Lee,.. (EJP08,EJP09) There are several advantages in applying this formalism to heavy quark system. Type of diquark and its q-q binding S=C=0 (ud)  A S=-1, ms=5/3mu (us)  3/5 A (ds)  3/5 A C=1, mc=5mu (uc)  1/5 A (dc)  1/5 A (sc)  3/25 A

Diquark picture for L, S (with D. Jido , K. Kim) Magnetic moment: L = (ud)0 s , S =(us)0d+(ds)0u u d s QCD sum rule with diquark field

Result:

Result- cont Constituent diquark mass

Tetra-quark - configurations Binding against decay = (Mass of 2 Mesons) – (Mass of Tetraquark) 0+  0- 0- u d d u u d d u 0+  0- 0- u d c b u c d b

Tetra-quark – hadronic weak decay modes 1+  0- 1- u d c c u c d c

e Tcc (3800) e+ Previous works on Tcc Can look for 1+ (Tcc) Z. Zouzou, B. Silverstre-Brac, C. Gilgnooux, J Richard (86), D. Janc, M. Rosina (04), Y. Cui, S. L. Zhu (07) QCD sum rules: F Navarra, M.Nielsen, SHLee, PLB 649, 166 (2007) simple diquark: SHL, S. Yasui, W.Liu, C Ko EPJ C54, 259 (2008), SHL, S. Yasui: EPJ C (09) Can look for 1+ (Tcc) Belle: PRL 98, 082001 (07) e+ e-  J/y + X(3904)  D D* e c c Tcc (3800) c c e+ SHL, S Yasui, W Liu, C Ko (08)

Pentaquarks (states with two diquarks ) QQs L D u d u s  u d Q u 1/2- s Q

Di-bayron – general considerations S=C=0 (ud)  -A S=-1, ms=5/3mu (us)  -3/5 A (ds)  -3/5 A C=1, mc=5mu (uc)  -1/5 A (dc)  -1/5 A (sc)  -3/25 A di-baryon B B 1 2 3 4 1 2 3 4  Conf-1 0+ 5 6 5 6 B B 1 2 6 4 Conf-2 3 5

Di-bayron (Conf 1) – (qq) (qq) (qq) H di-baryon u d u d u d u s  0+ CFL like state 2SC like state s s d s H di-baryon  could be bound unfortunately not found so far

Di-baryon (Conf 2) – (qq) (qq) (qQ) Hc di-baryon P Xc 0+ u d u s u d u s  u c u c Hc di-baryon  new prediction could be found in heavy ion collision

Production ratios for predicted Multiquarks Qc production at RHIC and LHC Qc/D > 0.74 x 10 -4 Qc/Ds > 0.23 x 10 -3 Hc production at RHIC and LHC Hc/D > 0.8 x 10 -4 Hc/Ds > 0.25 x 10 -3 Tcc production Tcc/D > 0.34 x 10 -4 RHIC > 0.8 x 10 -4 LHC

Summary of talk and discussions this week Particle correlation from HIC could be a nice way to measure hadronic interation and /or bound state information particle H f0 a0 Ds0 X(3872) L(1405) correlation L L K+ K- D0 K+ D0 D0* P K- Diquarks are unique features of QCD, Mutltiquark states will exits in Heavy sector, due to diquark structure Tcc (ud cc) Qbs (udusb), Hc(udusuc)  real weak decay, small background in RHIC, LHC  can be a very useful heavy exotic factory  If found, it will be the first flavor exotic ever,  will tell us about QCD, q-q interaction and dense matter  great step forward in QCD Diquarks can enhance and/or shift pt dependence of L/K, Lc/D production in HIC  can be a signature of remnant property of sQGP New Idea ???  For hadron physics in Heavy Ion collision

Tetraquark: Jaffe q1 q3 q2 q4 color spin interaction: light scalar nonet q1 q3 q2 q4 Diquark configurations Color Spin Favor s-s LL Q-Q 3bar -2 1 6 2/3 -1/3 Color Spin Favor s-s LL Q-Qbar 1 1,8 -4 4/3 8 1/2 -1/6 There are several advantages in applying this formalism to heavy quark system. Scalar nonet |9,0+> Diquark basis Q-antiQ basis

Multiquark configuration: Mulders, Aerts, de Swart PRD80 color spin interaction: light scalar nonet u d u d u u d u s There are several advantages in applying this formalism to heavy quark system. u d u s u u d u s u s