Quarkonia & XYZ at e+e– colliders

Slides:



Advertisements
Similar presentations
1 Charged Z’s at Ruslan Chistov (ITEP, Moscow) Representing the Belle Collaboration Quarkonium Working Group Workshop (Nara, NWU, December 2-5/2008) ●
Advertisements

Spectroscopy of Heavy Quarkonia Holger Stöck University of Florida Representing the CLEO Collaboration 6 th International Conference on Hyperons, Charm.
Sep. 29, 2006 Henry Band - U. of Wisconsin 1 Hadronic Charm Decays From B Factories Henry Band University of Wisconsin 11th International Conference on.
X(3872) Review T.Aushev LPHE seminar. 8 February 2010T.Aushev, LPHE seminar2 Introduction Era of the new family of particles, named XYZ, started from.
DPF Victor Pavlunin on behalf of the CLEO Collaboration DPF-2006 Results from four CLEO Y (5S) analyses:  Exclusive B s and B Reconstruction at.
New Results and Prospects of Light Hadron Spectroscopy Shan JIN Institute of High Energy Physics (IHEP) Presented by Yi-Fang Wang.
New Particles at BELLE Beauty 2005 Assisi Spectroscopy and new Particles F. Mandl There is an impressive list of new particles in the charm sector discovered.
New Particles X(3872) Y(4260) X(3940) University of Hawai’i Future of Heavy Flavors ИТЗФ 7/23-24/06 Z(3930) Y(3940) Ѕтефан Олавич ????
Charmonium Decays in CLEO Tomasz Skwarnicki Syracuse University I will concentrate on the recent results. Separate talk covering Y(4260).
1. 2 July 2004 Liliana Teodorescu 2 Introduction  Introduction  Analysis method  B u and B d decays to mesonic final states (results and discussions)
July 7, 2008SLAC Annual Program ReviewPage 1 New Charmonium-like States Arafat Gabareen Mokhtar SLAC Group-EC (B A B AR ) DOE Review Meeting July 8 th,
EXOTIC MESONS WITH HIDDEN BOTTOM NEAR THRESHOLDS D2 S. OHKODA (RCNP) IN COLLABORATION WITH Y. YAMAGUCHI (RCNP) S. YASUI (KEK) K. SUDOH (NISHOGAKUSHA) A.
Recent Results of Light Hadron Spectroscopy at BESIII Yutie LIANG (On behalf of the BESIII Collaboration) Justus-Liebig-Universität, Gieβen, Germany MESON.
1 Bottomonium and bottomonium–like states Alex Bondar On behalf of Belle Collaboration Cracow Epiphany Conference “Present and Future B-physics” (9 - 11,
“Exotic” bottomonium states Alex Bondar BINP, Novosibirsk Belle Collaboration (Hadrons from Quarks and Gluons, January 16, 2014, Hirschegg, Austria)
Exotic Heavy Quarkonium States Alex Bondar BINP, Novosibirsk Belle Collaboration (INR, May 15, 2015, Moscow, Russia)
Quarkonium and quarkonium-like states Alex Bondar BINP, Novosibirsk Belle Collaboration (KEK, December 13, 2013, Tsukuba, Japan)
Kraków, June 9th, 2015 Exotic quarkonium-like states Andrzej Kupsc Positronium – quarkonia XYZ studies at BESIII Zc states: Zc 0± (3900), Zc 0± (4020)
Molecular Charmonium. A new Spectroscopy? II Russian-Spanish Congress Particle and Nuclear Physics at all Scales and Cosmology F. Fernandez D.R. Entem,
cc spectroscopy at elle S.L.Olsen Hawaii QWG 2004 Worksop IHEP Beijing _.
New Observations on Light Hadron Spectroscopy at BESIII Yanping HUANG For BESIII Collaboration Institute of High Energy Physics (IHEP) ICHEP2010, Paris,
New hadrons BaBar Maurizio Lo Vetere University of Genova & INFN Representing the Collaboration Particles and Nuclei International Conference.
1 Тяжелый кварконий, эксперимент Р.В. Мизюк (ИТЭФ) Сессия-конференция секции ЯФ ОФН РАН "Физика фундаментальных взаимодействий“ 23 ноября 2011г., ИТЭФ.
1 Y(5S) spectroscopy at Belle Alex Bondar BINP, Novosibirsk (On behalf of Belle Collaboration) International Conference on High Energy Physics, ,
New Resonances at Belle Jolanta Brodzicka INP Kraków, for the Belle Collaboration ICFP 2005 October 4 th, 2005 Taiwan Outline  ‘ old’ X(3872) properties.
Φ→Ψ, BINP, Novosibirsk.2011P. Pakhlov Phys. Lett. B702, 139 (2011) Charged charmonium-like states as rescattering effects in B  D sJ D (*) P. Pakhlov.
Qiang Zhao Theory Division Institute of High Energy Physics Chinese Academy of Sciences 第十届全国粒子物理学术会议,南京, 2008 年 4 月 日 Search for Z(4430) in meson.
1 ITEP Winter School 2012, Feb Roman Mizuk ITEP, Moscow Quarkonium, experiment BELLE Collaboration.
Stephen Lars Olsen Seoul National University February 10, 2014 A New Spectroscopy of Hadrons High-1 Gangwando.
E. Robutti Enrico Robutti I.N.F.N. Genova HEP 2003 Europhysics Conference July 17-23, Aachen, Germany Recent BABAR results in Charmonium and Charm Spectroscopy.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
D. Bettoni - The Panda experiment 1 Charmonium Spectroscopy The charmonium system has often been called the positronium of QCD. Non relativistic potential.
P. Pakhlov (ITEP), for Belle Collaboration New exotic and conventional charmonium at Belle New charmonium below open flavor threshold Charmonium states.
Low energy scattering and charmonium radiative decay from lattice QCD
University of Salamanca
Present status of Charm Measurements
Hadron Physics at Belle
Institute of High Energy physics KEK, Hadron physics at J-PARC, Japan
Maurizio Lo Vetere University of Genova & INFN
Double Ks0 Photoproduction off the proton at CLAS
Spectroscopy Today BaBar’s Contributions
from Belle, BaBar and CLEO
Observation of the DsJ(2463)Dspo & Confirmation of the DsJ(2317)Dspo
Upsilon Decays Helmut Vogel Carnegie Mellon University
Charm spectroscopy 1 A. Drutskoy University of Cincinnati
Recent results on light hadron spectroscopy at BES
Zb states (All Results from Belle)
Exotic and Conventional Quarkonium Physics Prospects at Belle II
Study of New Hadron Spectroscopy at BESIII
Andrei Nomerotski (Oxford/Fermilab) ICHEP 2006, 29 July 2006
Decoding the riddle of Y(4260) and Zc(3900) Qiang Zhao
charm baryon spectroscopy and decays at Belle
Hidden charm spectroscopy from B-factories
Charmed Baryon Spectroscopy and Decays using the Belle Detector
e+e−→ open charm via ISR X(4160) in J/ recoil
Double charmonium production in e+e– annihilation
e+e−→ J/ D(*)D(*) & ψ(4160) → DD
Hadron spectroscopy results from Belle
CONVENTIONAL CHARMONIA
Study of charmonium(-like) states at the Belle experiment
Exotic Hadron spectroscopy at Belle and BaBar
Hot Topic from Belle : Recent results on quarkonia
BELLE Results on Heavy Spectroscopy
Key issues about the nature of Y(4260)
Exotic hadron physics at Belle II
Heavy quark exotica and heavy quark symmetry
New States Containing Charm at BABAR
Charm Physics at Belle X,Y,Z states: just charmonia or exotics?
New Spectroscopy with Charm quarks at B factories.
Recent experimental results and Opportunities in Exotic Hadrons
Presentation transcript:

Quarkonia & XYZ at e+e– colliders “Charmonium production & decay”, 6-8 March 2013, LAL, Orsay Quarkonia & XYZ at e+e– colliders Roman Mizuk ITEP, Moscow

Spectroscopy  strong interactions at low energy Ultimate theory : Good accuracy for ground states High excitations more difficult Not intuitive Lattice QCD  Effective theories / phenomenological models Quark Model Collective degrees of freedom: constituent quarks Hadrons: qq and qqq _ g valence gluons qq di-quarks qqq tri-quarks, … gg glueballs qqg hybrids qqqq tetraquarks, … _ Exotics _ _ Theory & experiment  exotics among light mesons – no established states Heavy quarkonia – observation of anomalous XYZ states. Unexpected.

Charmonium table Potential models “Old” states (observed before 1980) Y(4660) Z(4430)+ Y(4360) X(4160) Y(4260) Z(4250)+ “Old” states (observed before 1980) X(3872) Y(3915) Z(4050)+ Y(4008) DD _ X(3940) 2(1D) New states (last decade) New states with unusual properties S=1 S=1 S=0 S=0 JPC L=0 L=1 L=2 States below DD threshold are narrow (annihilation or  other charmonia) _ States above DD threshold are broad ( DD, DD*, ...) _ 3

Charmonium Bottomonium Y(4660) Z(4430)+ (11020) Y(4360) 11.00 (10860) X(4160) Y(4260) Y(3915) Zb + X(3872) 10.75 Y(4008) DD _ X(3940) (4S) 2M(B) 2(1D) hb(3P) 10.50 b(3P) (2D) b(3S) (3S) hb(2P) b(2P) 10.25 (1D) S=1 S=1 S=0 S=0 (2S) b(2S) 10.00 hb(1P) b(1P) JPC L=0 L=1 L=2 9.75 9.50 (1S) b(1S) - 1 -- - -- JPC = 0 + 1+ (0,1,2)++ (0,1,2) L=0 L=1 L=2 4

Charmonium Bottomonium Y(4660) Z(4430)+ Above thresholds (11020) Y(4360) 11.00 (10860) X(4160) Y(4260) Zb + X(3872) Y(3915) 10.75 Thresholds Y(4008) DD _ X(3940) (4S) 2M(B) 2(1D) hb(3P) 10.50 b(3P) (2D) b(3S) (3S) hb(2P) b(2P) 10.25 (1D) S=1 S=1 S=0 S=0 (2S) b(2S) 10.00 hb(1P) b(1P) JPC L=0 L=1 L=2 9.75 Below threshold 9.50 (1S) b(1S) - 1 -- - -- JPC = 0 + 1+ (0,1,2)++ (0,1,2) L=0 L=1 L=2 5

Quarkonia below open flavor thresholds 6

pNRQCD: 4114 MeV Lattice: 608 MeV Spin-singlet states _  Spin-spin interaction in qq potential (11020) 11.00 (10860) 10.75  MHF  |(0)|2 (4S) 2M(B) hb(3P) 10.50 b(3P) (2D) b(1S) b(3S) (3S) Mass, GeV/c2 PDG 2012 hb(2P) b(2P) BaBar + CLEO : MHF(1S) = 69.3  2.8 MeV 10.25 (1D) pNRQCD: 4114 MeV Lattice: 608 MeV (2S) b(2S) Kniehl et al., PRL92,242001(2004) Meinel, PRD82,114502(2010) 10.00 some tension hb(1P) b(1P) MHF(1P) b(2S) 9.75 center of gravity ee[(nS)]  |(0)|2   0.5 ee [(2S)] ee [(1S)] MHF(2S)  MHF(1S) (1S) 9.50 b(1S) MHF(1S) - 1 -- - -- JPC = 0 + 1+ (0,1,2)++ (0,1,2) hb(1P, 2P) MHF(2S)  0 L=0 L=1 L=2 test of long-range spin-spin contribution 7

Observation of hb(1P) and hb(2P) (11020) PRL108,032001(2012) Mmiss(+-) 11.00 residuals (10860) +- hb(2P) 10.75 (4S) hb(1P) 2M(B) 10.50 b(3P) (2D) b(3S) (3S) Mass, GeV/c2 hb(2P) b(2P) 10.25 (1D) 19%  (2S) b(2S) 10.00 hb(1P) b(1P) MHF(1P) = +0.8  1.1 MeV MHF(2P) = +0.5  1.2 MeV 13% Belle :  consistent with zero, as expected 9.75 41% Godfrey & Rosner, PRD66 014012 (2002) (1S) N[hb(1P)] = (50.4  7.8 +4.5) 103 9.50 b(1S) –1.9 - 1 -- - N[hb(2P)] = (84.4  6.8 +23) 103 JPC = 0 + -- –10 1+ (0,1,2)++ (0,1,2) hb(nP)  b(mS)   study b(1S)  search for b(2S) L=0 L=1 L=2 8

Method M(b) M(hb) (5S)  hb (nP) +- reconstruct  b(mS)  Decay chain (5S)  hb (nP) +- reconstruct  b(mS)  Use missing mass to identify signals MC simulation M(b) true +- true  M(hb)

Method M(b) M(hb) (5S)  hb (nP) +- reconstruct  b(mS)  Decay chain (5S)  hb (nP) +- reconstruct  b(mS)  Use missing mass to identify signals MC simulation true +- fake  M(b) true +- true  fake +- true  M(hb)

Method M(b) M(hb) (5S)  hb (nP) +- reconstruct  b(mS)  Decay chain (5S)  hb (nP) +- reconstruct  b(mS)  Use missing mass to identify signals MC simulation true +- fake  Mmiss(+- )  Mmiss(+-) – Mmiss(+-) + M(hb) M(b)  no correlation true +- true  fake +- true  M(hb)

Method Approach: M(b) M(hb) (5S)  hb (nP) +- reconstruct Decay chain (5S)  hb (nP) +- reconstruct  b(mS)  Use missing mass to identify signals MC simulation Mmiss(+- )  Mmiss(+-) – Mmiss(+-) + M(hb) M(b)  no correlation Approach: fit Mmiss(+-) spectra in Mmiss(+-) bins M(hb)

Method M(b) b M(hb) (5S)  hb (nP) +- reconstruct  b(mS)  Decay chain (5S)  hb (nP) +- reconstruct  b(mS)  Use missing mass to identify signals MC simulation M(b) b hb yield vs. Mmiss(+-) M(hb)

Observation of hb(1P,2P) b(1S)  (5S)hb(nP) +–  b(1S)  PRL 109, 232002 (2012) MHF(1S) Belle : 57.9  2.3 MeV (11020) hb(1P) yield 3 11.00 PDG’12 : 69.3  2.8 MeV (10860) b(1S) 10.75 +- BaBar (3S) (4S) 2M(B) BaBar (2S) 10.50 b(3S) (3S) hb(2P) b(2P) hb(2P) yield b(1S) CLEO (3S) 10.25 b(2S) (2S) 10.00 hb(1P) b(1P) pNRQCD LQCD  9.75 Kniehl et al, PRL92,242001(2004) Mmiss (+-) (n) Meinel, PRD82,114502(2010) (1S) 9.50 b(1S) MHF(1S) First measurement  = 10.8 +4.0 +4.5 MeV (as expected) –3.7 –2.0 JPC = 0 + - 1 -- 1 + - (0,1,2)++ Belle result eliminates tension with theory

Observation of hb(1P,2P) b(1S)  PRL101, 071801 (2008) (5S)hb(nP) +–  b(1S)  BaBar (3S)b(1S) MHF(1S) ISR b(1S) Belle : 57.9  2.3 MeV hb(1P) yield PDG’12 : 69.3  2.8 MeV b(1S) b(1P) PRL103, 161801 (2009) BaBar (2S)b(1S) hb(2P) yield b(1S) ISR b(1S) pNRQCD LQCD Kniehl et al, PRL92,242001(2004) PRD81, 031104 (2010) Mmiss (+-) (n) Meinel, PRD82,114502(2010) First measurement  = 10.8 +4.0 +4.5 MeV (as expected) –3.7 –2.0 Belle result eliminates tension with theory CLEO (3S)

“look elsewhere effect” First evidence for b(2S) PRL 109, 232002 (2012) (5S)hb(2P) +–  b(2S)  MHF(2S) = 24.3 +4.0 MeV –4.5 First measurement b(2S) 4.2 with systematics & “look elsewhere effect” pNRQCD LQCD Belle In agreement with theory Mmiss (+-) (2) (2S) = 4  8 MeV, < 24MeV @ 90% C.L. expect 4MeV Branching fractions Expectations BF[hb(1P)  b(1S) ] = 49.25.7+5.6 % BF[hb(2P)  b(1S) ] = 22.33.8+3.1 % BF[hb(2P)  b(2S) ] = 47.510.5+6.8 % 41% 13% 19% –3.3 Godfrey Rosner PRD66,014012(2002) –3.3 –7.7 c.f. BESIII BF[hc(1P)  c(1S) ] = 54.38.5 % 39%

Charmonium table Potential models “Old” states (observed before 1980) Y(4660) Z(4430)+ Y(4360) X(4160) Y(4260) Z(4250)+ “Old” states (observed before 1980) X(3872) Y(3915) Z(4050)+ Y(4008) DD _ X(3940) New states (last decade) New states w/ unusual properties JPC States below DD threshold are narrow (annihilation or  other charmonia) _ States above DD threshold are broad ( DD, DD*, ...) _ 17

Charmonium table Potential models “Old” states (observed before 1980) Y(4660) Z(4430)+ Y(4360) X(4160) Y(4260) Z(4250)+ “Old” states (observed before 1980) X(3872) Y(3915) DD* _ Z(4050)+ Y(4008) DD _ X(3940) New states (last decade) c2 2 New states w/ unusual properties JPC D-wave states all observed States below DD threshold are narrow (annihilation or  other charmonia) _ States above DD threshold are broad ( DD, DD*, ...) _ Expect two more narrow states (unnatural spin-parity + below DD* threshold) _ 18

Evidence for 2(1D) preliminary Study B+  c1  K+ |  J/  M(c1 ) X(4160) Y(4260) X(3872) Y(3915) DD* _ 4.2 w/ syst. Y(4008) DD _ X(3940) c2 2 M = 3823.5  2.8 MeV  = 4  6 MeV, <14 MeV @90% C.L. JPC D-wave states Radiative decay seen  O(100keV) 19

Evidence for 2(1D) preliminary Study B+  c1  K+ JPC = 2– – L=2 S=1 |  J/  Y(4360) M(c1 ) X(4160) Y(4260) X(3872) Y(3915) DD* _ 4.2 w/ syst. Y(4008) DD _ X(3940) 2(1D) M = 3823.5  2.8 MeV  = 4  6 MeV, <14 MeV @90% C.L. JPC C (c1) = – Radiative decay seen  O(100keV) JPC = 2– – L=2 S=1 ~2/3 BF(B+  2K+)  BF(2  c1) = = (9.7 +2.8 +1.1) 10-6 -1.0 -2.5 factorization suppression c.f. BF(B+  (2S) K+) = 6.4 10-4 20

Charmonium Bottomonium Y(4660) (11020) Y(4360) 11.00 (10860) X(4160) Y(4260) X(3872) Y(3915) 10.75 Y(4008) DD _ X(3940) (4S) 2M(B) 2(1D) hb(3P) 10.50 b(3P) (2D) b(3S) (3S) hb(2P) b(2P) 10.25 (1D) S=1 S=1 S=0 S=0 (2S) b(2S) 10.00 hb(1P) b(1P) JPC L=0 L=1 L=2 9.75 Recent finding: b(2S), hb(1P,2P), b(3P) 2(1D) 9.50 (1S) b(1S) Properties of all states below open flavor thresholds are consistent with expectations - 1 -- - -- JPC = 0 + 1+ (0,1,2)++ (0,1,2) L=0 L=1 L=2 21

Quarkonia at open flavor thresholds 22

X(3872) 10th anniversary! 739 618 381 CP B→Xsγ Belle citation count Phys.Rev.Lett.91, 262001 (2003) 10th anniversary!

production at high energy X(3872) PDG’12 MX(3872) – (MD0 + MD*0) = -0.16 ± 0.32 MeV Z(4430)+ Relative BF J/  J/  J/  D0D*0 _ 1 0.8  0.3 0.21  0.06 10 isospin violation Z(4250)+ X(4160) X(3872) Y(3915) Z(4050)+ DD _ JPC = 1++ X(3940) 2(3820) Most likely interpretation: DD* molecule with admixture of c1(2P) isospin violation production at high energy Fractions of admixtures? Bound or virtual? Dynamical model? Experimental issues: M (D0 mass uncertainty dominates) (2S)  (Belle/BaBar controversy) line-shape in DD* (statistics limited) absolute BF (inelastic channels?) _ 24

Anomaly in hb(nP) production (11020) PRL108,032001(2012) Mmiss(+-) 11.00 residuals (10860) +- hb(2P) 10.75 (4S) hb(1P) 2M(B) 10.50 b(3P) (2D) b(3S) (3S) Mass, GeV/c2 hb(2P) b(2P) 10.25 (1D) (2S) b(2S) 10.00 hb(1P) b(1P) spin-flip [(5S)  hb(mP) +–] 9.75  1 [(5S) (nS) +–] (1S) 9.50 b(1S) expect suppression (QCD/mb)2 - 1 -- - JPC = 0 + -- 1+ (0,1,2)++ (0,1,2) L=0 L=1 L=2 Mechanism of (5S) decays ? 25

Resonant structure of (5S)  (bb) +– _ Resonant structure of (5S)  (bb) +– Belle PRL108,122001(2012) (5S)  hb(1P)+- (5S)  hb(2P)+- zero non-res. contribution Two peaks in all modes phsp Minimal quark content _  bbud  phsp flavor-exotic states M[ hb(1P) π ] M[ hb(2P) π ] Dalitz plot analysis (5S) (1S)+- (5S) (2S)+- (5S) (3S)+- note different scales

(5S) (nS) +- Dalitz plots M2(π+π-) M2(π+π-) M2(π+π-) Angular analysis favors JP=1+ S-wave S-wave (5S)  Zb, Zb  (nS) – no spin orientation change Spins of (5S) and (nS) can be ignored S(s1,s2) = A(Zb1) + A(Zb2) + A(f0(980)) + A(f2(1275)) + ANR BW Flatte BW C1 + C2∙m2(ππ)

Fit results 180o (2S) hb(1P)  = 0o  Zb  Zb ’ Average over 5 channels M1 = 10607.2  2.0 MeV 1 = 18.4  2.4 MeV MZb – (MB+MB*) = + 2.6  2.1 MeV M2 = 10652.2  1.5 MeV 2 = 11.5  2.2 MeV MZb’ – 2MB* = + 1.8  1.7 MeV M(hb), GeV/c2 hb(1P) yield / 10MeV 180o (2S) hb(1P)  = 0o Phase btw Zb and Zb amplitudes is 0o for (nS) 180o for hb(mP) ’ destr. interf. Resonant behavior of Zb amplitudes (intensity & phase). 28

flip of phase in hb amplitude Structure of Zb JP = 1+ , IG = 1+ Bondar et al, PRD84,054010(2011) _  B B*  =   Proximity to thresholds favors molecule over tetraquark Zb  + S-wave _  B*B*  =   – Zb’  not suppressed (nP) hb(mP) flip of phase in hb amplitude Assumption of molecular wave-function allows to explain all properties of Zb hb(nP) is not suppressed due to mB*–mB splitting A (hb)  1 MZb – M + i/2 –  0 MZb’ – M + i/2 If mb    mB*  mB and mZb’  mZb

Search for Zb  BB* and B*B* _ _ Search for Zb  BB* and B*B* _ arXiv:1209.6450 e+e-  (5S)  B(*)B(*) _ M(B) Mmiss(B) BB* Full reconstruction of one B _ BB _ B*B* BF[ (5S)  B(*)B(*) ] _ PRD81,112003(2010) Belle 121.4 fb-1 significance Belle 23.6 fb-1 _ BB BB* + BB* B*B* <0.60 % at 90% C.L. (4.25  0.44  0.69) % (2.12  0.29  0.36) % (0  1.2) % (7.3  2.3) % (1.0  1.4) % _ _ _ _ 9.3 5.7 _ BFs are consistent with previous measurement

Observation of ZbBB* and Zb’B*B* _ _ Observation of ZbBB* and Zb’B*B* arXiv:1209.6450 _ Zb’  BB* is suppressed w.r.t. B*B* despite larger PHSP _ M (BB*) Zb Molecule  admixture of BB* in Zb’ is small _ 8 Zb’ ? phsp Challenging for tetraquark _ M (B*B*) Zb’ 6.8 phsp Z b properties are consistent with molecular structure

Evidence for a neutral Zb (2S) e+e-  (5S)  (nS)00 (1S) BF[(5S)(1S)00] = (2.250.110.20) 10-3 BF[(5S)(2S)00] = (3.790.240.49) 10-3 in agreement with isospin relations M miss (0 0) Dalitz plot analysis of (1S,2S)00  w/ Zbs w/o Zb Zb(10610)0 5.3 (4.9 w/ syst.) Zb(10650)0  2 (2S) 00 : (1S) 00 : Zb signals not significant Yields agree with isospin expectations  Confirmation that Zb is an isotriplet M [(2S)0 ]

Origin of structure at threshold 1. Threshold effect   Chen Liu PRD84,094003(2011) Zb Zb’ B(*) B(*) (5S) (2S) B(*) _ S-wave M [(2S)π] Danilkin Orlovsky Simonov PRD85,034012(2012) 2. Coupled-channel resonance multiple re-scatterings  pole Zb  B(*)   B(*)  B(*)  Zb’ + + ... (5S) B(*) _ B(*) _ B(*) _ (2S) (2S) (2S)   3. Deuteron-like molecule B(*) Ohkoda et al arxiv:1111.2921 ,,, exchange (5S)  B(*) _ (2S) Request to theory: predictions (formulas) to fit data !

Quarkonia above open flavor thresholds 34

“Conventional” states (3770) (4040) (4160) (4415) _ _ DD, DD*, ... Y(4660) DD, DD*, ... Y(4360) X(4160) Y(4260) X(3872) Y(3915) Y(4008) X(3940) Y(4008) Y(4260) Y(4360) Y(4660) Y(3915) “Anomalous” states J/ +- (2S) +- J/  from ISR JPC = 1– – decays to DD, DD*, ... not seen _ 2(1D) e+e-  J/ ISR (4040) (4160) arxiv:1210.7550 c.f. ((2S)  J/)  102keV ((3770) J/)  50keV typical (Y   ) > 1MeV  huge for charmonium (  J/ )  1 MeV _ All states above DD threshold have anomalous properties? 35

Anomalies in (5S)  (nS) +– transitions (11020) Belle PRL100,112001(2008) 11.00 (10860) [(5S)  (1S,2S,3S) +–] >> [(4S,3S,2S) (1S) +–] Zb + 10.75 260 – (4S) 2M(B) 10.50 2 + (3S) Mass, GeV/c2 hb(2P) 10.25 430  Rescattering of on-shell B(*)B(*) ? _ 1 (2S) b(2S) 10.00 hb(1P) 290 6 9.75 partial (keV) Simonov JETP Lett 87,147(2008) 9.50 (1S) b(1S) Meng Chao PRD77,074003(2008) - 1 -- - JPC = 0 + 1+  More transitions ? 36

Observation of (5S) (1D)+- 121 fb-1 PRL108,032001(2012) Mmiss(+-) residuals Seen inclusively (2.4): hb(2P) N (1D)  1/7 N (2S)  [(5S)  (1D) +-]  60 keV is anomalously large hb(1P) (1D) PRELIMINARY Mmiss(+-) Observed using exclusive reconstruction : (5S)  (1D) +-  (1S)  |  bJ(1P)  (1D) (2S) 9  +- | BF[(5S)  (1D) +-  (1S) +- ] = (2.0  0.4  0.3)×10−4 reflection c.f. CLEO: BF[(3S)  (1D)   (1S)  ] = (2.5  0.5  0.5)×10−5 more details: P.Krokovny @ LaThuile 2012 37

Observation of (5S)  (1S,2S)  121 fb-1 PRELIMINARY Mmiss(+-0) Exclusive reconstruction (2S) BF[ (5S)  (1S)  ] = (0.73  0.16  0.08)×10−3 BF[ (5S)  (2S)  ] = ( 3.8  0.4  0.5 )×10−3 [ (5S)  (1S,2S)  ]  40 – 200 keV anomalously large (1S) E1M2 [(5S)  (nS)  ] [(5S)  (nS) +-] 0.16  0.04  0.02 for (1S) 0.48  0.05  0.09 for (2S) R5n = = E1E1 no strong suppression c.f. Belle R21 = (1.99  0.14 +0.12) 10–3 –0.08  hadron loops? BaBar R41 = 2.41  0.40  0.12 Simonov, Veselov arXiv:0806.2919 Meng, Chao PRD78, 074001(2008) Voloshin MPLA26,773(2011) 38

– Bottomonium Charmonium c +- &  transitions +- transitions Y(4660) “(5S)” +- Y(4360)  +- _ Y(4260) BB (4160) (4040) (3S) Y(4008)  _ hb(2P) DD (1D) (2S) (2S) hb(1P) J/ J/ (1S) _ similar [ “(5S)”  (bb) +- ]  1 MeV [ /Y   hadrons ]  1 MeV _ _ One-to-many (bb) vs. Many-to-one (cc).  Hadron loops? c – π  Hadrocharmonium? Voloshin 39

Z(4050) Z(4250) Also hadrocharmonium? _ DD JPC Y(4660) Y(4360) Y(4260) Y(4008) Y(3915) X(3872) X(3940) X(4160) 2(1D) DD _ JPC Also hadrocharmonium? Charged charmonium like states – multiquark candidates produced in B  Z K decays Z(4050) Belle: Z(4430)  (2S) + and  c1 + Within the reach of LHCb Z(4250) BaBar: no significant signals 40

Only (constituent) quarks so far (no valence gluons, di-quarks,..) ! Summary Many new results from B-factories, hadronic machines : Quarkonia below threshold: 2(1D), b(2S) , hb(1P) , hb(2P), b(3P) Isotriplet molecular states seen in 6 decay modes: (1S)+, (2S)+, (3S)+, hb(1P)+, hb(2P)+, BB*(B*B*) Ground states & ~low excitations – Potential models etc are OK Open flavor thresholds – new types of hadrons: meson molecules Above open flavor thresholds – anomalous transitions Zb – very rich phenomenological objects  understanding of highly excited states need “unquenched” Quark Model Only (constituent) quarks so far (no valence gluons, di-quarks,..) ! 41

Back-up 42

Claim of exclusively reconstructed b(2S) 5 authors from CLEO: Dobbs, Metreveli, Seth, Tomaradze, Xiao PRL109,082001(2012) e+e-  (2S)  b(2S) , b(2S)  26 exclusive channels MHF(2S) b(2S) is here according to Belle Dobbs et al. 48.72.7 MeV Belle 5σ 24.3 +4.0 MeV 24.3 +4.0 MeV –4.5 –4.5 Origin of Belle signal and Dobbs et al. signal can not be the same Dobbs et al. have no sensitivity to low values of MHF(2S)

Claim of exclusively reconstructed b(2S) 5 authors from CLEO: Dobbs, Metreveli, Seth, Tomaradze, Xiao PRL109,082001(2012) exp Dobbs et al. assumed exponential background FSR FSR is known to contribute power law tail e.g. (2S)  K+K- n(+-) FSR 4.6 Background model is incomplete  significance of 4.6 is overestimated Properties of the Dobbs et al. signal ... factor 30 LQCD pNRQCD Belle 0.6 0.9 0.8 0.7 Dobbs et al. N[(2S)b(2S)]  0.2 N[(2S) b1(1P) ] c.f. [’c(2S)] = 0.007 [’c1] BESIII PRL109,042003(2012) ... does not look physical It is unlikely that the signal of Dobbs et al. is due to b(2S).

Branching fractions of (4040,4160)J/ preliminary Fit: (4040) and (4160) only (4040) 6.0 w/ syst. 6.5 w/ syst. < 3 ~ (4160) BF, % 1st solution: (4040) 0.56  0.10  0.17 (4160) 0.48  0.10  0.17 2nd solution: (4040) 1.30  0.15  0.26 (4160) 1.66  0.16  0.29 [(4040,4160)] = (80,103) MeV  [ (4040,4160)  J/ ]  1 MeV First time  states exhibit anomalous coupling to (J/ hadrons). Common feature of all  states above threshold ? 45

Calibration tolerable Energy of  Shift in  energy Mdata–MMC lab.system Shift in  energy Mdata–MMC 2P2S Use signals : 0  |E1–E2| E1+E2 <0.05 M /M 1P1S E E M /M = 2P1S D*0  D0  M /(MD* –MD) Shift in  energy Fudge-factor 0  D* Agreement! tolerable Typical syst. uncertainty : M ~ 0.7–1.5 MeV,  ~ 1.5 MeV.