Strange Probes of QCD Matter

Slides:



Advertisements
Similar presentations
Elliptic flow of thermal photons in Au+Au collisions at 200GeV QNP2009 Beijing, Sep , 2009 F.M. Liu Central China Normal University, China T. Hirano.
Advertisements

TJH: ISMD 2005, 8/9-15 Kromeriz, Czech Republic TJH: 1 Experimental Results at RHIC T. Hallman Brookhaven National Laboratory ISMD Kromeriz, Czech Republic.
Charm & bottom RHIC Shingo Sakai Univ. of California, Los Angeles 1.
Identified particle transverse momentum distributions in 200 GeV Au+Au collisions at RHIC 刘海东 中国科技大学.
Heavy Quark Probes of QCD Matter at RHIC Huan Zhong Huang University of California at Los Angeles ICHEP-2004 Beijing, 2004.
Probing Properties of the QCD Medium via Heavy Quark Induced Hadron Correlations Huan Zhong Huang Department of Physics and Astronomy University of California.
03/14/2006WWND2006 at La Jolla1 Identified baryon and meson spectra at intermediate and high p T in 200 GeV Au+Au Collisions Outline: Motivation Intermediate.
We distinguish two hadronization mechanisms:  Fragmentation Fragmentation builds on the idea of a single quark in the vacuum, it doesn’t consider many.
1 相对论重离子碰撞中  介子的产生 陈金辉 中国科学院上海应用物理研究所 QCD 相变与重离子碰撞物理国际暨 2008 年 7 月 10 号 -12 号 Many thanks to: X. Cai, S. Blyth, F. Jin, H. Huang, G. Ma,
Luan Cheng (Institute of Particle Physics, Huazhong Normal University) I. Introduction II. Interaction Potential with Flow III. Flow Effects on Light Quark.
Centrality-dependent pt spectra of Direct photons at RHIC F.M. Liu 刘复明 Central China Normal University, China T. Hirano University of Tokyo, Japan K.Werner.
5-12 April 2008 Winter Workshop on Nuclear Dynamics STAR Particle production at RHIC Aneta Iordanova for the STAR collaboration.
Interaction between jets and dense medium in heavy-ion collisions Rudolph C. Hwa University of Oregon TsingHua University, Beijing, China May 4, 2009.
Strange and Charm Probes of Hadronization of Bulk Matter at RHIC International Symposium on Multi-Particle Dynamics Aug 9-15, 2005 Huan Zhong Huang University.
Identified Particle Ratios at large p T in Au+Au collisions at  s NN = 200 GeV Matthew A. C. Lamont for the STAR Collaboration - Talk Outline - Physics.
Flow and Collective Phenomena in Nucleus-Nucleus Collisions Huan Z Huang Department of Physics and Astronomy University of California, Los Angeles Department.
QM’05 Budapest, HungaryHiroshi Masui (Univ. of Tsukuba) 1 Anisotropic Flow in  s NN = 200 GeV Cu+Cu and Au+Au collisions at RHIC - PHENIX Hiroshi Masui.
1 Identified Di-hadron Correlation in Au+Au & PYTHIA Simulation Jiaxu Zuo Shanghai Institute of Applied Physics & BNL CCAST Beijing,
1 Recent Results from RHIC Huan Zhong Huang 黄焕中 Department of Physics and Astronomy University of California Los Angeles Department of Engineering Physics.
Jet quenching and direct photon production F.M. Liu 刘复明 Central China Normal University, China T. Hirano 平野哲文 University of Tokyo, Japan K.Werner University.
Empirical Constraints on Hadronization of Bulk Matter at RHIC International Workshop on QCD and Experiments at RHIC August 9-14, 2004 Beijing, P.R. China.
Probing Properties of QCD Matter with Strange and Heavy Quarks Huan Zhong Huang 黄焕中 Department of Physics and Astronomy University of California Los Angeles,
Kang Seog Lee Chonnam National University, Korea Dynamical Recombination model of QGP Introduction – recombination model Dynamic recomination calculation.
1 Fukutaro Kajihara (CNS, University of Tokyo) for the PHENIX Collaboration Heavy Quark Measurement by Single Electrons in the PHENIX Experiment.
Heavy-Ion Physics - Hydrodynamic Approach Introduction Hydrodynamic aspect Observables explained Recombination model Summary 전남대 이강석 HIM
High Density Matter and Searches for Huan Z. Huang Department of Physics and Astronomy University of California, Los Angeles The STAR Collaboration.
Strange Probes of QCD Matter Huan Zhong Huang Department of Physics and Astronomy University of California Los Angeles, CA Oct 6-10, 2008; SQM2008.
Multi-Parton Dynamics at RHIC Huan Zhong Huang Department of Physics and Astronomy University of California Los University Oct
24 Nov 2006 Kentaro MIKI University of Tsukuba “electron / photon flow” Elliptic flow measurement of direct photon in √s NN =200GeV Au+Au collisions at.
2010/04/18Yichun Measurements of identified hadron production at high p T in p+p and Au+Au collisions at RHIC-STAR 许依春 (Yichun Xu)
Jin-Hui Chen Shanghai Institute of Applied Physics, CAS In collaboration with F. Jin, D. Gangadharan, X. Cai, H. Huang and Y. Ma Parton distributions at.
Intermediate pT results in STAR Camelia Mironov Kent State University 2004 RHIC & AGS Annual Users' Meeting Workshop on Strangeness and Exotica at RHIC.
Production of strange particles at RHIC via quark recombination C.B. Yang Institute of Particle Physics, Wuhan, China Collaborated with Rudolph C. Hwa.
Elliptic Flow of Inclusive Photon Elliptic Flow of Inclusive Photon Ahmed M. Hamed Midwest Critical Mass University of Toledo, Ohio Oct. 22,
Outline Motivation Analysis technique Results Conclusions.
Hard Probes and Heavy Flavor from STAR
High-pT Identified Hadron Production in Au+Au and Cu+Cu Collisions
Rudolph C. Hwa University of Oregon
for STAR Collaboration
Strangeness Production in Heavy-Ion Collisions at STAR
Maya SHIMOMURA University of Tsukuba for the PHENIX Collaboration
Anisotropic flow at RHIC: How unique is the NCQ scaling ?
Heavy-Flavour Physics in Heavy-Ion Collisions
Experimental Studies of Quark Gluon Plasma at RHIC
Fragmentation and Recombination for Exotics in Heavy Ion Collisions
Charm production at STAR
Status and Implications of PID measurements at high pT
Outline First of all, there’s too much data!! BRAHMS PHOBOS PHENIX
STAR Spin alignment of vector mesons (K*0, φ) in Au+Au and p+p collisions at RHIC Jin Hui Chen Shanghai Institute of Applied Physics and UCLA For the STAR.
Tatsuya Chujo University of Tsukuba (for the PHENIX Collaboration)
Xiaobin Wang (for the STAR Collaboration)
Scaling Properties of Identified Hadron Transverse Momentum Spectra
Current status of Thermalization from available STAR results
20th International Conference on Nucleus Nucleus Collisions
φ-meson production and partonic collectivity at RHIC
International CCAST Summer School and Workshop on QCD and RHIC Physics
Eitaro Hamada, Univ. of Tsukuba
Comments on RHIC Results
Identified Charged Hadron
System Size and Energy Dependence of -meson Production at RHIC
Identified Charged Hadron Production
Shengli Huang Vanderbilt University for the PHENIX Collaboration
ShinIchi Esumi, Univ. of Tsukuba
Hiroshi Masui for the PHENIX collaboration August 5, 2005
Identified Charged Hadron Production at High pT
The azimuthal anisotropy in high energy heavy ion collisions at RHIC
Masahiro Konno (Univ. of Tsukuba) for the PHENIX Collaboration Contact
Dipartimento Interateneo di Fisica, Bari (Italy)
Hadronization of a QGP via recombination
QGP Formation Signals and Quark Recombination Model
Presentation transcript:

Strange Probes of QCD Matter Huan Zhong Huang Department of Physics and Astronomy University of California Los Angeles, CA 90095-1547 Oct 6-10, 2008; SQM2008 Beijing Thanks to Jinhui Chen, Gang Wang and Shingo Sakai

Outline Strangeness in Bulk Partonic Matter Hadronization and Evolution Dynamics Thermalized Effective Quarks PT Scale for Jet Energy Loss in QCD Medium Is There a Clear Path-Length Effect in Eloss? Ourlook

Strangeness Probes Thermal Gluons of QGP QGP Thermal Gluons  effective strangeness production process P.Koch, B. Muller and J. Rafelski: Phys.Rept.142:167-262,1986 In central A+A collisions, there is no phase space penalty for being strange ! Au+Au@200GeV STAR Phys. Rev. Lett. 98 (2007) 62301 There is a penalty for being heavy – exp(-m/T) !

Strangeness is Enhanced in A+A Collisions STAR Preliminary (Cu+Cu 200 GeV) Or Canonically Suppressed? 200 GeV Au+Au Data: Phys. Rev. C 77 (2008) 44908

Strangeness enhancement STAR Preliminary 62.4 GeV 200 GeV X K, L Strangeness enhancement: yield relative to p+p -meson enhancement: -- between K/L and X -- 200 GeV data > 62.4 GeV, unlike hyperons -- could not be solely due to the canonical suppression, there could be dynamics effect See Bedanga Mohanty’s Talk

Hadronization of Bulk Partonic Matter  Coalescence Partons at hadronization have a v2  Collectivity Deconfinement ! Quark Coalescence – (ALCOR-J.Zimanyi et al, AMPT-Lin et al, Rafelski+Danos, Molnar+Voloshin …..) Quark Recombination – (R.J. Fries et al, R. Hwa et al)

Is KET better variable capturing the physical picture? Phenix: PRL 98, 162301 (2007) Empirically, maybe ! But why should it work for pions  mostly from decays why KET  not really additive !

W and f particles are special ! Little resonance decay contribution ! Coalescence of thermal strange quarks --- important in A+A collisions ! What is the thermal quark pT distribution ? In the hydro region – coalescence of quarks with hydro expansion OR fragmentation of quarks Cu+Cu@200GeV Au+Au@200GeV

Parton PT Distributions at Hadronization If baryons of pT are mostly formed from coalescence of partons at pT/3 and mesons of pT are mostly formed from coalescence of partons at pT/2 and f particles have no decay feeddown contribution ! decay contribution is small These particles have small hadronic rescattering cross sections 9

Strange and down quark distributions s distribution harder than d distribution perhaps related to different s and d quarks in partonic evolution Independent Test – f/s should be consistent with s quark distribution Yes ! 10 See Jinhui Chen’s talk

pT Scales and Physical Processes RCP Three PT Regions: -- Fragmentation -- multi-parton dynamics (recombination or coalescence or …) -- Hydrodynamics (constituent quarks ? parton dynamics from gluons to constituent quarks? )

Hydrodynamics and Coalescence Most Hydrodynamic Calculations – Cooper-Frye Freeze-out thermal statistical distribution in the co-moving frame Coalescence model – has been applied to particles with pT > 2 GeV/c or so ! For pT < 2 GeV/c  hydrodynamic behavior OR coalescence of effective constituent quarks with radial flow are these approaches equivalent ? Empirically the coalescence physical picture appealing ! Problem: -- how to deal with resonances, r w effective mass of quarks ?

RAA(pT>6GeV/c) Almost pT Independent RAA=(Au+Au)/[Nbinaryx(p+p)] Empirical Implications for a constant RAA for pT > 6 GeV/c !!

Energy Loss Shifts pp pT to AA pT by DpT AA/Nbin DpT pT > 5 GeV/c For a power-law function (1+pT/a)-n a flat RAA  DpT/pT constant ! What Physical Processes?

Npart Dependence of Energy Loss No significant difference in DpT/pT between light hadron and non-photonic electrons ! DpT/pT ~ 25% in most central collisions ! The physical origin of the N2/3 dependence? Linear Npart not bad either

Absence of Explicit Path Length Dependence The centrality dependence of DpT/pT could be due to the initial energy density in collisions !

What Possible Physical Scenario for ELoss without L dependence T. Hirano et al, Phys. Rev. C69, 034908 (2004) ELoss of Partons: 1) Strong dependence on energy density 2) Rapid decrease of energy density in time interval < traversing time Hydrodynamic models show such a scenario plausible !

Path-Length Dependence in Soft Particles 3<pTtrig<4GeV/c & 1.0<pTasso<1.5GeV/c 20-60% STAR  = associate - trigger (rad) At low pT region, the medium response to Parton ELoss -- has path-length dependence Caution: the current trigger pT is high enough to be in the dominant parton energy loss domain !

V2 and RAA are Related via Path Length Dependence Precise value of v2 at pT > 6, 10 GeV/c ? RAA at pT > 10 GeV/c at RHIC should RAA approach unity at higher pT ? Future measurements will shed lights on possible physical scenarios for parton energy loss dynamics ! Heavy Quarks will be special -- Lorentz g dependence on parton ELoss on jet-medium interaction Mach cone formation?

Summary L X W Central Au+Au Collisions at RHIC Bulk Partonic Matter -- 1) strangeness equilibrated 2) parton collectivity v2 and hydro expansion 3) multi-parton dynamics coalescence/ recombination 4) pT or KET distributions for effective quarks W X L

Summary Parton Energy Loss  Hadron PT Scale > 5-6 GeV/c Constant RAA  DpT /pT constant as a function of pT Absence of Clear Path-Length Dependence of ELoss -- Rapid Decrease of Energy Density with Evolution Time -- Even partons originated from the center of the hot/dense fireball may escape Theoretically Eloss calculations – dynamic issue simultaneous calculation of RAA and v2 at high pT !!

Eloss ~ L*Density ?