Precision Mass Measurements of Short-lived Nuclei at CSRe-Lanzhou

Slides:



Advertisements
Similar presentations
Penning-Trap Mass Spectrometry for Neutrino Physics
Advertisements

Testing isospin-symmetry breaking and mapping the proton drip-line with Lanzhou facilities Yang Sun Shanghai Jiao Tong University, China SIAP, Jan.10,
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
High precision study of the  decay of 42 Ti  V ud matrix element and nuclear physics  Experimental and theoretical precisions  New cases: goals and.
Precision mass measurements for fundamental studies Tommi Eronen Max-Planck-Institut für Kernphysik Heidelberg, Germany.
GT (  ) : Weak Process: Important roles in the Universe Combined Analysis of Mirror GT Transitions for the study of Proton-Rich Far-Stability Nuclei.
The Atomic Mass Evaluation: Present and Future WANG Meng Institute of Modern Physics, CAS ARIS2014, Tokyo, June 2.
Future Penning Trap Experiments at GSI / FAIR – The HITRAP and MATS Projects K. Blaum 1,2 and F. Herfurth 1 for the HITRAP and MATS Collaboration 1 GSI.
B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 Mass Measurement Collaboration G. Audi, K. Beckert, P. Beller, F. Bosch, D. Boutin, T. Buervenich,
Overview of Storage-Ring Projects at Lanzhou Xinwen Ma Institute of Modern Physics, Chinese Academy of Sciences ILIMA GSI-Helmholtz, 28, Feb,
Isospin impurity of the Isobaric Analogue State of super-allowed beta decay experimental technique isospin impurity determination Bertram Blank, CEN Bordeaux-Gradignan.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
ExternalTargetFacility at CSR FRIB-China East Lansing Sun, Zhiyu Institute of Modern Physics, CAS.
Reaction cross sections of unstable nuclei Contents What is reaction cross section (  R )?  R Effective matter density distributions of unstable nuclei.
Mass Measurements at CSRe and Related Physics Yuhu Zhang (Y. H. Zhang) Institute of Modern Physics, Chinese Academy of Sciences Lanzhou , China (
The 11 th Inter. Conf. on nucleus-Nucleus Collision, San Antonio Texas, May 27- June 1 Yu-Hu Zhang Institute of Modern Physics, Chinese Academy of Sciences.
Ning Wang 1, Min Liu 1, Xi-Zhen Wu 2, Jie Meng 3 Isospin effects in nuclear mass models Nuclear Structure and Related Topics (NSRT15), , DUBNA.
Tensor force induced short-range correlation and high density behavior of nuclear symmetry energy Chang Xu ( 许 昌 ) Department of Physics, Nanjing Univerisity.
Mass measurements using low energy ion beams -1- C. Thibault 31 mars 2004 Motivations to measure masses Present status Experimental methods for direct.
Objectives and benefits to the US nuclear physics programs Accomplishments so far Opportunities and Challenges Nuclear Theory Program Division of Nuclear.
Ning Wang 1, Min Liu 1, Xi-Zhen Wu 2, Jie Meng 3 Isospin effect in Weizsaecker-Skyrme mass formula ISPUN14, , Ho Chi Minh City 1 Guangxi Normal.
Temperature Regulation for High-Precision Mass Measurements at ISOLTRAP Elizabeth Wingfield, Florida State, Tallahassee Advisor: Alexander Herlert.
35 Ca decay beta-delayed 1- and 2-proton spokespersons: J. Giovinazzo (CENBG), O. Tengblab (CSIC) institutions: Centre d’Etudes Nucléaires (Bordeaux) –
KITPC Program: From nucleon structure to nuclear structure and compact astrophysical objects June 11 – July 20, 2012 Physics of Neutron Star.
UNIVERSITÄT DES SAARLANDES 1 Introduction to solid state physics at ISOLDE Th. Wichert (Universität des Saarlandes) Nuclear Physics & Astrophysics at CERN.
Ning Wang An improved nuclear mass formula Guangxi Normal University, Guilin, China KITPC , Beijing.
Nanuf03, Bucharest, Stefan Kopecky Traps for fission product ions at IGISOL Experimental Facilities Mass Measurements Status and Future Perspectives.
GAN Zaiguo Institute of Modern Physics, Chinese Academy of Sciences Alpha decay of the neutron-deficient uranium isotopes.
Outline Sebastian George Tokyo 2007 High-Precision Mass Spectrometry
Mass Measurements for Short-lived Nuclei at CSRe-Lanzhou Meng Wang Institute of Modern Physics, CAS The 9th Japan- China Joint Nuclear Physics Symposium.
Direct mass measurement of 58 Ni projectile fragments at CSRe Xinliang Yan Precision nuclear spectroscope group Institute of Modern Physics, Chinese Academy.
Variational approach to isospin symmetry breaking in medium mass nuclei A. PETROVICI Institute for Physics and Nuclear Engineering, Bucharest, Romania.
Shape evolution of highly deformed 75 Kr and projected shell model description Yang Yingchun Shanghai Jiao Tong University Shanghai, August 24, 2009.
Precision mass measurements of n-rich nuclei between N=50 and 82. Short overview on the experimental approach Penning trap mass measurements on n-rich.
February 12-15,2003 PROCON 2003, Legnaro-Padova, Italy Jean Charles THOMAS University of Leuven / IKS, Belgium University of Bordeaux I / CENBG, France.
Two-proton simultaneous emission from 29 S C.J. Lin 1, G.L. Zhang 1, F. Yang 1, H.Q. Zhang 1, Z.H. Liu 1, C.L. Zhang 1, P. Zhou 1, X.K. Wu 1, X.X. Xu 1,
Present Status of AME and NUBASE Meng WANG CSNSM, Orsay, France IMP,Lanzhou,China April 6, 2011, Vienna.
R.Burcu Cakirli*, L. Amon, G. Audi, D. Beck, K. Blaum, Ch. Böhm, Ch. Borgmann, M. Breitenfeldt, R.F. Casten, S. George, F. Herfurth, A. Herlert, M. Kowalska,
Alexander Herlert High-precision mass measurements for reliable nuclear-astrophysics calculations CERN, PH-IS NIC-IX, CERN, Geneva, June 29, 2006.
TAMU, Cyclotron Institute Be , 8 B+ 208 Pb Elastic Scattering at Intermediate Energies Jiansong Wang Institute of Modern Physics Chinese Academy.
Nuclear Mass Measurement and Evaluation WANG Meng Institute of Modern Physics, CAS 1st International Workshop on Nuclear Structure, Hadron Physics and.
RIBLL-1 能区放射性束弹性散 射研究 王建松中国科学院近代物理研究所. Institute of Modern Physics, Chinese Academy of Sciences Elastic Scatering Studies at RIBLL , J.S.Wang 报告提纲 关于.
Max-Planck-Institut für Kernphysik, Heidelberg Zhuang GE RIKEN, Wako, Japan Mass measurements of short-lived nuclides at storage rings in Asia and its.
1 Atomic Mass Evaluation Meng WANG (王猛) CSNSM-CNRS, France MPIK-Heidelberg, Germany IMP-CAS, China 5 th FCPPL workshop.
Proton emission from deformed rare earth nuclei Robert Page.
CSR-External-Target-Facility Experiment (CEE) Nu Xu (许怒) (1) College of Physical Science & Technology, Central China Normal University, China.
Isochronous mass measurements of 58 Ni projectile fragments at CSRe Xinliang Yan Precision nuclear spectroscope group Institute of Modern Physics, Chinese.
Mass Measurements of Short-lived Nuclei at HIRFL-CSR
Fusion of 16,18O + 58Ni at energies near the Coulomb barrier
Alexander Herlert, CERN (PH-SME-IS)
THE APPLICATION OF TRACKER WITH SA IN ALIGNMENT OF HIRFL-CSR
Centre de Sciences Nucléaires et de Sciences de la Matière
HIAF Electron Cooling System &
Beta Neutrino Correlation Measurement with Trapped Radioactive Ions
China-Japan collaboration workshop,
Justus-Liebig-University Giessen
Cross-section Measurements of (n,xn) Threshold Reactions
Emmanuel Clément IN2P3/GANIL – Caen France
Nuclear Physics Sakura-i  Hiro-yoshi 櫻   井  博 儀.
Institut de Physique de Rennes, Université de Rennes I, Rennes
Nuclear masses of neutron-rich nuclei and symmetry energy
Status of the A=56, 64, and 68 X-ray burst waiting points
Lanzhou.
Cluster structure of excited 9Li
Weizsaecker-Skyrme mass model and the statistical errors
Hadron Programs at HIRFL-CSR
High-precision mass measurements of exotic nuclides:
Institut de Physique Nucléaire Orsay, France
An improved nuclear mass formula
Penning Trap Mass Spectrometry for Particle Physics
Presentation transcript:

Precision Mass Measurements of Short-lived Nuclei at CSRe-Lanzhou “China-Japan collaboration workshop”, University of Tsukuba, June 26-28, 2017 Precision Mass Measurements of Short-lived Nuclei at CSRe-Lanzhou Meng Wang Institute of Modern Physics, CAS

CSRe mass measurement collaboration Y. H. Zhang, M. Wang, H. S. Xu, R. J. Chen, X. C.Chen, C. Y. Fu, B. S. Gao, Y.H. Lam, P. Shuai, M.Z. Sun, X. L.Tu, Y.M. Xing, X. Xu, X. L. Yan, Q. Zeng, P. Zhang, X. Zhou, X. H. Zhou, Y. J. Yuan, J. W. Xia, J. C. Yang, Z. G. Hu, S. Kubono, X. W. Ma, R. S. Mao, B. Mei, G. Q. Xiao, H. W. Zhao, T. C. Zhao, W. L. Zhan (IMP-CAS, Lanzhou, China) Yu.A. Litvinov, S. A. Litvinov, S.Typel (GSI, Darmstadt, Germany) K. Blaum (MPIK, Heidelberg, Germany) Baohua SUN (Beihang University) Y. Sun (Shanghai Jiao Tong University, Shanghai, China) F.R. Xu (Beijing University, China) H. Schatz, B. A. Brown (MSU, USA) G. Audi (CSNSM-IN2P3-CNRS, Orsay, France) A. Ozawa (University of Tsukuba, Japan) T. Yamaguchi (Saitama University, Saitama, Japan) T. Uesaka, S. Naimi, Y. Yamaguchi (RIKEN, Saitama, Japan)

Outline Motivation and background Method and technical improvements Results and discussions Perspective and summary

Mass → binding energy → interaction Motivation: why do we measure nuclear masses? Mass → binding energy → interaction = N× +Z× - binding energy Filed of application Required uncertainty Chemistry: identification of molecules 10−5–10−6 Nuclear physics: shells, sub-shells, pairing 10−6 Nuclear fine structure: deformation, halos 10−7–10−8 Astrophysics: r-process, rp-process, waiting points 10−7 Nuclear models and formulas: IMME Weak interaction studies: CVC hypothesis, CKM unitarity 10−8 Atomic physics: binding energies, QED 10−9–10−11 Metrology: fundamental constants, CPT 10−10 √ √ √ √ K. Blaum, Physics Reports 425 (2006) 1–78

Background: current status of mass measurements predicted ~7000 discovered ~3200 mass known ~2500 AME2016

AME2016 Atomic mass evaluation AME2016 published as Chinese Physics C Vol. 41, No. 3 (2017) 030001 , 030002 , 030003 Files can be downloaded at http://amdc.impcas.ac.cn. AME collaboration: Meng Wang (IMP), G. Audi (CSNSM), F.G. Kondev (ANL), W.J. Huang (CSNSM), S. Naimi (RIKEN) and Xing Xu (IMP)

Nuclear masses: AME2012

Nuclear masses: AME2016

Background: worldwide activities JYFL MSL ANL GANIL JGU TRIUMP JINR MSU CIAE GSI RIKEN ORNL IAEA LBL BNL CERN IMP FSU Main institutions of nuclear research Facilities for direct mass measurements

New results in AME2016

New results in AME2016

New results in AME2016

New results in AME2016

RIBs at hundreds of AMeV Background: HIRFL-CSR research facility Research aims: establish the IMS technique; measure nuclear masses; study the associated physics CSRe RIBLL1 RIBs at tens of AMeV RIBLL2 RIBs at hundreds of AMeV CSRm 1000 AMeV (H.I.),  2.8 GeV (p) Heavy Ion Research Facility in Lanzhou

Method and technical improvements Principle Setting optimization Double ToF Correction for magnetic-field fluctuation

Procedure of mass measurements SSC SFC DT CSRe TOF detector CSRm

Principle T=L/v Bρ=m/q βγc

Principle : isochronous mass spectrometry T=L/v Bρ=m/q βγc

Optimizing the IMS setting 目标核 NIM A 763 (2014) 53-57 γt= γ

Optimizing the IMS setting Optimized the isochronous setting by tuning quadrupoles and sextupoles Dr. Chen Ruijiu’s talk, next session

Double-TOF IMS Singal TOF Doubel TOF Two ToF detectors: ds=18 m X. Xu et al., Chin.Phys.C 39, 106201 (2015)

Double-TOF IMS Revolution time vs Bρ 22 2018/9/20

Double-TOF IMS Revolution time vs Bρ 23 2018/9/20

Correction for drift of the magnetic fields

Correction for drift of the magnetic fields arXiv:1407.3459

Results and discussions Overview Mass of 52g,mCo and relevant physics In-ring decay

Overview of experimental results Beams: 78Kr, 58Ni, 86Kr, 112Sn, 58Ni, 36Ar X. L. Tu et al., PRL 106, 112501 (2011) Y. H. Zhang et al., PRL 109, 102501 (2012) X. L. Yan et al. ApJ 766, L8 (2013) P. Shuai et al., PL B 735,327 (2014) X. Xu et al., PRL 117, 182503 (2016) P. Zhang et al., PLB 767, 20 (2017) Precision 10-6~10-7 (20-200 keV) Double TOF Improved precision Measured first time

High precision Test of CVC hypothesis P. Zhang et al., Physics Letters B 767: 20–24 (2017) Zhang Peng’s talk, next session

Mass of 52g,mCo X. Xu et al., PRL 117, 182503 (2016) D.A. Nesterenko et al., J. Phys. G 44, 065103 (2017)

Mass of 52g,mCo and the relevant physics β decay branching to IAS ~66% Ep=1349 Ip=9.4% β-p of 52Ni Existing information 52Ni T=2 Theory prediction: β decay branching to IAS ~66% Jp=0+ b+ 2407 keV I𝞬=42% 141 keV β-γ of 52Ni Ep=1352 ME=-31561(13) Ep=1048 52Mn 6+, g.s 2+, 378 1+, 546 1+, 2636 1+, 2875 2378 168 0+, 2938 IAS 141 ME=-33968 ME=-34109 2407 ME=-32913(9) 51Fe+p Starting point L. Faux et al., PRC 49, 2440 (1994). C. Dossat et al., NPA 792, 18 (2007). S. E. A. Orrigo et al., PRC 93, 044336 (2016). Isomer ME= x g.s 52Co

Mass of 52g,mCo and the relevant physics β decay branching to IAS ~66% d-coefficient of IMME 52Ni T=2 Jp=0+ Theory prediction: β decay branching to IAS ~66% b+ Ep=1352 ME=-31561(13) Ep=1048 52Mn 6+, g.s 2+, 378 1+, 546 1+, 2636 0+, 2938 IAS 1+, 2875 2378 168 141 ME=-33968 ME=-34109 2407 ME=-32913(9) 51Fe+p Starting point Isomer ME= x g.s 52Co

Mass of 52g,mCo and the relevant physics 52Ni T=2 d-coefficient Jp=0+ b+ DME=135(17) deviation by 8σ 66% ME=-31426(10) 52Mn 6+, g.s 2+, 378 1+, 546 1+, 2636 0+, 2938 IAS 1+, 2875 2378 168 387(13) 2+ 528(13) 1+ 2935(13) IAS 2800(16) 1+ 2496(16) 1+ ??? 52Co 141 2407 g.s 13.7% Ep=1352 Ep=1048 7.3% 42% ME=-32913(9) 51Fe+p 43% CSRe Isomer ME=-33974(10) g.s ME= -34361(8) Starting point

Mass of 52g,mCo and the relevant physics Potential energy surface calculations for 51Fe

Mass of 52g,mCo and the relevant physics ● Masses of 52g,52mCo measured for the first time with s ~10 keV. ● The T=2, Jπ=0+ IAS in 52Co was newly assigned:  question conventional identification of IASs from β-p method  masses of the T=2 multiplet fit well into the IMME  Mirror symmetry satisfied ● IAS in 52Co decays predominantly via γ-transitions while the proton emission is negligibly small due to very low isospin mixing in the IAS ● Shape coexistence in 51Fe was proposed in order to explain the details of the b+-decay branching ratios of 52Ni.

In-ring decay of T1/2 = 71 s Isomer in 94Ru 94mRu 0+ 2+ 4+ 6+ 8+ T1/2 = 71 ms Ex=2645 keV Finally I would like to draw your attention to our recent measurement on a short-lived isomer. It is often claimed the IMS has advantages over penning-trap-based mass spectrometry concerning the short half-life. But no clear example. Now I show you that. Neutral atom bare atom internal conversion coefficient α=0.335 T1/2 ?

In-ring decay of T1/2 = 71 s Isomer in 94Ru 94mRu 0+ 2+ 4+ 6+ 8+ T1/2 = 71 ms Ex=2645 keV Decay point Finally I would like to draw your attention to our recent measurement on a short-lived isomer. It is often claimed the IMS has advantages over penning-trap-based mass spectrometry concerning the short half-life. But no clear example. Now I show you that. Revolution time obtained from 30 turns In progress

Perspective and summary

Next beamtime, test of double TOF Primary beam : 58Ni

Summary Thank you!