Quantum Numbers of Charmed Baryons

Slides:



Advertisements
Similar presentations
Quark structure of the Pentaquark(?) Jo Dudek, Jefferson Lab.
Advertisements

Diquarks in heavy baryons Atsushi Hosaka (RCNP, Osaka U. ) 9/10-13, 2013Charmed baryons1 Practical questions of hadron physics How ground and excited states.
Excited Charm and K0sK0s Resonance Production at ZEUS V. Aushev For the ZEUS Collaboration XXXIX International Symposium on Multiparticle Dynamics ''Gold.
Hadronic B decays involving tensor mesons Hai-Yang Cheng ( 鄭海揚 ) Academia Sinica Properties of tensor mesons QCD factorization Comparison with experiment.
Kernfysica: quarks, nucleonen en kernen
HL-2 April 2004Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-2) Quarkonium Charmonium spectrum quark-antiquark potential chromomagnetic.
Quark dynamics studied in charmed baryons April 20, 2015ASRC Seminar1 Atsushi Hosaka, RCNP, Osaka ASRC Seminar Contents 1. Introduction 2. Structure: How.
08/09/2007 Tania Moulik, B Spectroscopy at Tevatron, ISMD International Symposium of Multiparticle Dynamics 2007 International Symposium of Multiparticle.
Non-standard mesons in BES III?
S-Y-05 S.H.Lee 1 1.Introduction 2.Theory survey 3.Charmed Pentaquark 4.Charmed Pentaquark from B decays Physics of Pentaquarks Su Houng Lee Yonsei Univ.,
1 Hadron Physics at RHIC Su Houng Lee 1. Few words on hadronic molecule candidates and QCD sum rules 2. Few words on diquarks and heavy Multiquark States.
1 Charm Review Update on charm mixing Charm semileptonic decay –Analysis of D  K*  –Analysis of D s  Charm 3 body hadronic decay –Isobar model versus.
Beijing, QNP091 Matthias F.M. Lutz (GSI) and Madeleine Soyeur (Saclay) Irfu/SPhN CEA/ Saclay Irfu/SPhN CEA/ Saclay Dynamics of strong and radiative decays.
10/29/2007Julia VelkovskaPHY 340a Lecture 4: Last time we talked about deep- inelastic scattering and the evidence of quarks Next time we will talk about.
Baryon Spectroscopy and Decays using the Belle Detector John Yelton University of Florida I review recent results on charmed baryon decay,
1 Scalar and Pseudoscalar Glueballs Hai-Yang Cheng Academia Sinica, Taipei December 4, 2009 Hadron 2009, Tallahassee, Florida.
New Hadrons Newly observed D(2550), D(2610), and D(2760) as 2S and 1D charmed mesons “the same title”, Phys. Rev. D82 (2010) Observation of New.
Branching Fractions and Direct CP
Direct CP violation in 3-body B decays
Low energy scattering and charmonium radiative decay from lattice QCD
Symposium on the “12% rule” and “ puzzle”
Lecture 7 Parity Charge conjugation G-parity CP FK7003.
Baryons on the Lattice Robert Edwards Jefferson Lab Hadron 09
The puzzle of (1405) and  (1475)
The study of pentaquark states in the unitary chiral approach
Institute of High Energy physics KEK, Hadron physics at J-PARC, Japan
On a possibility of baryonic exotica
Doubly charmed mesons from hadronic molecules
Structure of Mass Gap Between Two Spin Multiplets
mesons as probes to explore the chiral symmetry in nuclear matter
Observation of the DsJ(2463)Dspo & Confirmation of the DsJ(2317)Dspo
Hadronic decay properties of newly observed Ω_c baryons
E. Wang, J. J. Xie, E. Oset Zhengzhou University
Heavy quark spectroscopy and accurate prediction of b-baryon masses
Heavy quark spectroscopy and prediction of bottom baryon masses
Charm spectroscopy 1 A. Drutskoy University of Cincinnati
Theoretical aspects of exotic hadrons
Scalar Meson σ(600) in the QCD Sum Rule
Introduction to DsJ Analysis and D(*)D(*) reconstruction at CDF
Baryon Spectroscopy and Resonances
Quarkonium Spectroscopy
Possible Interpretations of DsJ(2632)
Exotic charmed four-quark mesons: molecules versus compact states
Introduction to DsJ Analysis at CDF
Excited State Spectroscopy from Lattice QCD
DsJ* ‘s & charmed strange baryons at Belle
Section IX - Quark Model of Hadrons
Decoding the riddle of Y(4260) and Zc(3900) Qiang Zhao
Masses of Scalar & Axial-Vector B Mesons:
Isosinglet scalar mesons & glueballs
charm baryon spectroscopy and decays at Belle
University of Minnesota on behalf of the CLEO Collaboration
Excited State Spectroscopy from Lattice QCD
Charmed Baryon Spectroscopy and Decays using the Belle Detector
Hadron spectroscopy results from Belle
手征夸克模型的一些应用 钟显辉 湖南师范大学物理与信息科学学院.
s, pentaquarks or excited heavy baryons, or both?
Theoretical review of excited D*/Ds* mesons
Yong-Liang Ma In collaboration with M. Harada
Hot Topic from Belle : Recent results on quarkonia
Interpretation of the observed hybrid candidates by the QGC Model
Hadronic 3-body B decays
Theoretical issues with S in 3-body decays
Baryon Resonances from Lattice QCD
Understanding DsJ*(2317) and DsJ(2460)
Heavy quark exotica and heavy quark symmetry
New States Containing Charm at BABAR
5-quark states in a chiral potential Atsushi Hosaka (RCNP)
Edward Shuryak Stony Brook
Remarks on mass difference between the charged and neutral K*(892)
Presentation transcript:

Quantum Numbers of Charmed Baryons Hai-Yang Cheng (鄭海揚) Academia Sinica, Taipei c states c states c(’) states c states UCAS, June 21, 2017

Spectroscopy In SU(3) representation, diquark = 33 = 3+6 3: c+, c+, c0 all decay weakly 6: c0, ’+c, ’0c, c++,+,0 only c0 decays weakly c*0, *+c, *0c, c*++,+,0 (JP = 3/2+) Sl=0 Sl=1 Many excited states observed: Orbitally excited p-wave states: Ll=1 e.g. c(2595), c(2625), c(2790), c(2815),… etc. (CLEO) Positive parity excitations: Ll=2,1,0 e.g. c(2880) with JP =5/2+ (Belle ’06) 2

Charmed baryon states c c c c ’c(3123) c(3080) c(3055) 3/2- ’c(2930) c(2880) 5/2+ c(2860) 3/2+ c(2815) 3/2- (1P) c(2800) c(2790) 1/2- (1P) c(2765) c(2770) 3/2+ c(2765) c(2695) 1/2+ ’c(2645) 3/2+ c(2625) 3/2- (1P) c(2595) 1/2- (1P) ’c(2575) 1/2+ c(2520) 3/2+ c(2470) 1/2+ c(2455) 1/2+ c(2287) 1/2+ c c c c

03/14/2017 c(2695) & c* don’t have strong decays 3050 3066 3000 3090 3119 03/14/2017 c(2695) & c* don’t have strong decays 5 narrow excited c states decaying into c(’)K

Agaev, Azizi, Sundu [1703.07091] H. Chen, Mao, W. Chen, Hosaka, Liu, Zhu [1703.07703] Karliner, Rosner [1703.07774] Yang, Ping [1703.08845] pentaquark K. Wang, Xiao, Zhong, Zhao [1703.09150] W. Wang, R. Zhu [1704.00179] Padmanath, Mathur [1704.00259] Cheng, Chiang [1704.00396] Huang, Ping, F. Wang [1704.01421] pentaquark Z.G. Wang [1704.01854] B. Chen, Liu [1704.02583] Z. Zhao, Ye, Zhang [1704.02688] Aliev, Bilmis, Savci [1704.03439] Kim, Polyakov, Praszalowicz [1704.04082] Agaev, Azizi, Sundu [1704.04928] An, H. Chen [1705.08571] pentaquark

Orbitally excited charmed baryon states L½+L¸ = Ll (not L½+L¸= Ll !) Two possible p-wave states (L+L=1):  state L½=1, L¸=0; antisymmetric under q1q2  state L½=0, L¸=1; symmetric under q1q2 Jl = Sl+Ll, J = Sc+Jl In HQ limit, Jl & Sc are separately conserved Seven lowest-lying p-wave c states denoted by symmetric antisymmetric (denoted by a tilde)

Assume Sl=1 (axial-vector diquark) for sextet, we have 5 P-wave c states. Many have assumed that the observed 5 narrow c baryons can be assigned to 5 P-wave states. We argue that it cannot be the case. In the presence of spin-orbital interaction Sc L & tensor interaction, states with same J but different Jl will mix together Chen, Liu

Masses in MeV nL, JP Ebert Shah B. Chen T.W. Chiu Agaev Expt 1S,1/2+ 2698 2695 2696 269528 2685123 2695.22.0 2S,1/2+ 3088 3100 3185 3075142 (3090) 1S,3/2+ 2768 2767 2764 278125 276989 2765.92.0 2S,3/2+ 3123 3126 3226 3119108 (3119) (1P,1/2-)l 2966 3011 2975 301545 2990129 (3000) (1P,1/2-)h 3055 3028 3063 (1P,3/2-)l 3029 2976 3066 (1P,3/2-)h 3054 2993 3120 3056103 (3050) 1P, 5/2- 3051 2947 3057 (3066) JP State Lattice PDG 0+ Ds0*(2317) 2317155 2317.70.6 1’+ D’s1(2460) 2463139 2459.60.6 1+ Ds1(2536) 2536124 2535.100.06 We take relativistic quark model results of Ebert, Faustov, Galkin (’11) as a benchmark. Yu-Chih Chen, Ting-Wai Chiu (’17) based on Nf =2+1+1 optimal domain wall fermion with m =280 MeV

Agaev H. Chen Karliner (i) (ii) Padmanath K. Wang W. Wang c(3000) 1/2- 1/2- 3/2- c(3050) 3/2- c(3066) 1/2+ 1/2+ or 1/2- 3/2- 5/2- c(3090) 3/2- 1/2+ 5/2- c(3119) 3/2+ 5/2- 3/2+ 1/2+ or 3/2+ Cheng Huang Z. Wang Zhang B. Chen Aliev c(3000) 1/2- 1/2+ or 3/2+ c(3050) 3/2- 5/2+ or 7/2+ 5/2- c(3066) 3/2- or 5/2- c(3090) 1/2+ c(3119) 3/2+

An ideal place for testing heavy quark symmetry and chiral symmetry: heavy hadron chiral perturbation theory (HHChPT) Yan, Cheng, Cheung, Lin, Lin, Yu; Wise; Burdman, Donoghue (’92) Strong decays of S-wave charmed baryons are governed by two couplings g1 & g2. While info on g1 is absent due to the lack of c*→ c , g2 can be fixed by the measured rate of c++ c++

Isospin relation c00 = ½ c+- adapted by PDG is strongly violated s-wave (d-wave) transitions between P-wave and S-wave baryons are described by six couplings h2,…,h7 (eight couplings h8,…,h15) Pirjol, Yan (’97) In principle, h2 can be determined from c(2593)c. However, m(c++) + m(-) = 2593.55 MeV, m(c0)+m(+) = 2593.31 MeV, thus strong decays of c(2593) are very close to threshold and very sensitive to the pion mass difference, m() – m(0) = 4.6 MeV  important threshold effects on c(2593) mass and coupling Isospin relation c00 = ½ c+- adapted by PDG is strongly violated Blechman, Falk, Pirjol, Yelton (’03) Previous fit  h2 = 0.437+0.114-0.102 Chua, HYC (’06) CDF (’11) has measured decays of c(2593) to c+- and obtained m[c(2593)] = 2592.25 0.28 MeV, h2 = 0.600.07

Strong decays of p-wave charmed baryons h8=h10 h10 8.91.0 10.01.1 h2 = 0.600.07, h10  (0.88+0.12-0.11)10-3 MeV-1 (c00)  4.5 (c+- ) Predicted too large rates for c(2790)0 & c(2815)+ 12

P-wave c states decay into ¥cK or ¥’cK in s- or d-wave transition Using quark model relation h3=2 h2 & assuming mass 3000 MeV ¡ (c0)= 410 MeV for h2 = 0.437 811 MeV for h2 = 0.60 1400 MeV by Zhao, Ye, Zhang 420 MeV by H.X. Chen et al. using QCD sum rules 35 MeV by B. Chen, Liu using Eichten, Hill, Quigg decay formula 32 MeV by Wang et al. based on chiral quark model

The other state (1P,1/2-)h must be too broad to be seen! With width of 410 MeV for c0 and the data of 4.5 0.7 MeV for c(3000), the mixing angle is constrained to be 96o or 84o. (111o by B. Chen & Liu, 24o or 47o by K. Wang et al.) c1(1/2-) is prohibited to decay into cK in HQ limit The other state (1P,1/2-)h must be too broad to be seen! Using h10=(0.85+0.11-0.08)10-3 extracted from measured width of Sc(2800), we obtain Expt ¡(c(3050))= sin2µ2(8.6+2.2-1.6) MeV, (0.80.20.1) MeV ¡(c(3066))= (13.3+3.4-2.5) MeV, (3.50.40.2) MeV  sin2 ¼ 160o, predicted width for c(3066) is too large by a factor of 4

The state (1P,1/2-)h is too broad to be seen! Agaev H. Chen Karliner (i) (ii) Padmanath K. Wang W. Wang c(3000) 1/2- 1/2- 3/2- c(3050) 3/2- c(3066) 1/2+ 1/2+ or 1/2- 3/2- 5/2- c(3090) 3/2- 1/2+ 5/2- c(3119) 3/2+ 5/2- 3/2+ 1/2+ or 3/2+ Cheng Huang Z. Wang Zhang B. Chen Aliev c(3000) 1/2- 1/2+ or 3/2+ c(3050) 3/2- 5/2+ or 7/2+ 5/2- c(3066) 3/2- or 5/2- c(3090) 1/2+ c(3119) 3/2+

Decay widths in MeV LHCb Agaev K. Wang B. Chen Zhang Cheng c(3000) 4.5 0.7 4.71.2 constraint on 1 5.0 constraint on 1 c(3050) 0.80.2 0.60.2 0.94 2.7 0.2 on 2 c(3066) 3.50.4 6.41.7 4.96 3.3 8.5 13.3+3.4-2.5 c(3090) 8.71.3 9.53 11.5 15.1 c(3119) 1.10.9 1.90.6 1.15 0.73 1.0

Regge trajectories in (JP, M2) plane: J = M2 + 0, in (nr, M2) plane: nr= M2+0 natural parity (P=(-1)J-1/2): 1/2+, 3/2-,… unnatural parity (P=(-1)J+1/2): 1/2-, 3/2+, 5/2-,… It is important to consider both spectroscopy & decay widths.

Charmed baryon states c c c c ’c(3123) c(3119) 3/2+(2S) c(3090) 5/2- (1P) c(3055) c(3050) 3/2- (1P) c(3000) 1/2- (1P) ’c(2970) c(2940) 3/2- ’c(2930) c(2880) 5/2+ c(2860) 3/2+ c(2815) 3/2- (1P) c(2800) c(2790) 1/2- (1P) c(2765) c(2770) 3/2+ c(2765) c(2695) 1/2+ ’c(2645) 3/2+ c(2625) 3/2- (1P) c(2595) 1/2- (1P) ’c(2575) 1/2+ c(2520) 3/2+ c(2470) 1/2+ c(2455) 1/2+ c(2287) 1/2+ c c c c

Excited c states c(2595), c(2625) → c1(1/2-,3/2-) doublet: J = Jl 1/2 c1(1/2-) [c]S, c1(3/2-) [c]P, [c]D ⇒ c(2625) with < 0.97 MeV is narrower than c(2595) with  = 2.60.6 MeV c(2765): radial excitation (2S) JP = ½- (Ebert, Faustov, Galkin ’07) even-parity orbital excitation ½+ (QM, Capstick, Isgur ‘86) c(2940): its spin-parity assignment is quite diverse radial excitation (2P) of c(2595) with JP= ½- (Ebert et al.) predicted mass too large by ~ 50 MeV a D*0p molecular ½- state with binding energy  5 MeV as m(D*0)+m(p)=2945 MeV (X.G. He, X.Q. Li, X. Liu, X.Q. Zeng, ’07) or 1/2+,3/2+, 5/2- suggested by others or c(2765)

c(2880): first positive parity excited charmed baryon Angular analysis of c(2880)→ c by Belle (’06) ⇒ J=5/2 is preferred Candidates for spin-5/2 states: HQS ⇒ parity assignment for c(2880) JP=5/2- is disfavored However, c2(5/2+) can decay into c* in a P-wave; prediction of R is not robust robust prediction c(2880) could be an admixture of Chua, HYC (’06)

Remarks: Based on the diquark idea, JP[c(2880)] = 5/2+ is predicted Wilczek and Selem (’06); Ebert, Faustov, Galkin (’07) Peking group (Zhu et al., hep-ph/0704.0075) has studied the strong decays of charmed baryons using 3P0 model ⇒ Since c(2880) decays into D0p, it cannot be a radial excitation ⇒ c2(5/2+), ’c2(5/2+), ’’c2(5/2+) & c2(5/2+) all ruled out as they don’t decay into D0p in 3P0 model. Moreover, too large ratio of c*/c for the first three & too large width ( 137 MeV) for the last one ⇒ c(2880) is a pure state     Some issues with ’’c3(5/2+) : 1. QM  m[c2(5/2+)]  2910MeV, and ’’c3(5/2+) is even heavier 2. The predicted width 28.3 MeV is larger than the measured one [c(2880)] = 5.81.1 MeV  22

c(2860): another D-wave excited state Existence of a new 3/2+ state was noticed even before LHCb experiment B. Chen, Wei, Liu, Matsuki (’16) Lu, Dong, Liu, Matsuki (’16) B. Chen, Liu, Zhang (’17) c(2860) observed by LHCb in D0p amplitude in b D0p- decay. It has JP = 3/2+. M= 2856.1+2.3-5.9 MeV  = 67.6+11.8-21.6 MeV

c(2940): JP = 3/2- or 1/2- ? LHCb (’17) studied spin & parity of ¤c(2940) and found JP= 3/2-. However, its Regge line is not parallel to other two Regge trajectories; ¤c(3005) predicted by quark-diquark model fits better. We suggest that ¤c(2940) is most likely an 1/2-(2P) state LHCb: “The most likely spin-parity assignment for ¤c(2940) is JP=3/2- but the other solutions with spin 1/2 to 7/2 cannot be excluded.”

Charmed baryon states c c c c ’c(3123) c(3119) 3/2+(2S) c(3090) 5/2- (1P) c(3055) c(3050) 3/2- (1P) c(3000) 1/2- (1P) ’c(2970) c(2940) 1/2- (2P) ’c(2930) c(2880) 5/2+ (1D) c(2860) 3/2+ (1D) c(2815) 3/2- (1P) c(2800) c(2790) 1/2- (1P) c(2765) 1/2+ (2S) c(2770) 3/2+ c(2765) c(2695) 1/2+ ’c(2645) 3/2+ c(2625) 3/2- (1P) c(2595) 1/2- (1P) ’c(2575) 1/2+ c(2520) 3/2+ c(2470) 1/2+ c(2455) 1/2+ c(2287) 1/2+ c c c c 24

Antitriplet states

’c baryons A missing ’c state with JP= 5/2- & mass ~ 2890 MeV. We assign it to ’c(2921) predicted by Ebert et al ’c(2930) & ’c(2921) form a P-wave doublet ’c2 (3/2-, 5/2-) ’c(2930) cK, c, ’cK HHChPT (’c(2930))= (77+20-14) MeV which deviates from measured 3613 MeV by 2.1. The QM relation h112= 2h102 could be broken.

 

c baryons c(2800) was the only excited state found after the ground states c(2455) & c(2520). It decays into c+ with width ~ 70 MeV Since c1 c in heavy quark limit as c1→[c]P . c(2800) is assigned to c0(1/2-) or c2 (3/2-, 5/2-). (c0++c++) 425 MeV for h2=0.437 If c0(1/2-) is identified with c(2800), mixing angle  > 66o; otherwise, c(2800) should have JP =3/2-.

29 ?? 3/2- 5/2+ c(3080) c(2980) c(2940) c(2880) c(2815) c(2800)

Sextet states

X.G. He et al. (’07), Y.B. Dong et al. (’14) c(2800)  DN A few more remarks: Strong decay modes: heavy baryon + light meson(s): c, c, c,… heavy meson + light baryon: D0p, D,… Molecule picture: c(2940)+  D*0p X.G. He et al. (’07), Y.B. Dong et al. (’14) c(2800)  DN Y.B. Dong et al. (’10) c(2970)  D m(D0)+m() = 2980.54 MeV > m[c(2970)0] = 2969.4 0.8 MeV

Charmed baryon states c c c c ’c(3123) 7/2+ (1D) c(3119) 5/2+ (1D) c(3066) 5/2- (1P) c(3055) 3/2+ (1D) c(3050) 3/2- (1P) c(3000) 1/2- (1P) ’c(2970) 1/2+ (2S) c(2940) 1/2- (2P) ’c(2930) 3/2- (1P) c(2880) 5/2+ (1D) c(2860) 3/2+ (1D) c(2815) 3/2- (1P) c(2800) 3/2- (1P) c(2790) 1/2- (1P) c(2765) 1/2+ (2S) c(2770) 3/2+ c(2765) 3/2- (1P) c(2695) 1/2+ ’c(2645) 3/2+ c(2625) 3/2- (1P) c(2595) 1/2- (1P) ’c(2575) 1/2+ c(2520) 3/2+ c(2470) 1/2+ c(2455) 1/2+ c(2287) 1/2+ c c c c

Conclusions If (1P,1/2-)l is identified with c(3000), the other state (1P,1/2-)h will be too broad to be seen! c(2940) is most likely an 1/2-(2P) state. Search for c baryon with mass ~ 3005 MeV and JP =3/2-. Regge trajectories fit nicely to c & c states; their mass differences lies between 180 ~200 MeV.