OpenGL API 2D Graphic Primitives

Slides:



Advertisements
Similar presentations
Chapter 2: Graphics Programming
Advertisements

Pemrograman OpenGL Dasar
OpenGL (Graphics Library) Software Interface to graphics software Allows to create interactive programs that produce color images of moving 3D objects.
CSC 461: Lecture 51 CSC461 Lecture 5: Simple OpenGL Program Objectives: Discuss a simple program Discuss a simple program Introduce the OpenGL program.
1 Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Programming with OpenGL Part 2: Complete Programs Ed Angel Professor of Computer Science,
30/1/2006Based on: Angel (4th Edition) & Akeine-Möller & Haines (2nd Edition)1 CSC345: Advanced Graphics & Virtual Environments Lecture 1: Introduction.
Programming with OpenGL Part 0: 3D API March 1, 2007.
CSC 461: Lecture 6 1 CSC461 Lecture 6: 2D Programming in OpenGL Objectives:  Fundamental OpenGL primitives  Attributes  Viewport.
Computer Graphics CS 385 February 7, Fundamentals of OpenGl and Glut Today we will go through the basics of a minimal OpenGl Glut project, explaining.
Using OpenGL in Visual C++ Opengl32.dll and glu32.dll should be in the system folder Opengl32.dll and glu32.dll should be in the system folder Opengl32.lib.
Demetriou/Loizidou – ACSC330 – Chapter 2 Graphics Programming Dr. Giorgos A. Demetriou Dr. Stephania Loizidou Himona Computer Science Frederick Institute.
CSE 470: Computer Graphics. 10/15/ Defining a Vertex A 2D vertex: glVertex2f(GLfloat x, GLfloat y); 2D vertexfloating pointopenGL parameter type.
Graphics Systems and OpenGL. Business of Generating Images Images are made up of pixels.
1 Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Programming with OpenGL Part 1: Background Ed Angel Professor of Computer Science, Electrical.
1. OpenGL/GLU/GLUT  OpenGL v4.0 (latest) is the “core” library that is platform independent  GLUT v3.7 is an auxiliary library that handles window creation,
1 Figures are extracted from Angel's book (ISBN x) The Human Visual System vs The Pinhole camera Human Visual System Visible Spectrum Pinhole.
Introduction to OpenGL Week 1 David Breen Department of Computer Science Drexel University Based on material from Ed Angel, University of New Mexico CS.
1 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Programming with OpenGL Review.
1 Chapter 2: Graphics Programming Bryson Payne CSCI 3600 NGCSU.
C O M P U T E R G R A P H I C S Guoying Zhao 1 / 43 C O M P U T E R G R A P H I C S Guoying Zhao 1 / 43 Computer Graphics Programming with OpenGL I.
Pemrograman OpenGL Dasar Pertemuan 5 Hand out Komputer Grafik.
NoufNaief.net TA: Nouf Al-harbi.
1 E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 Programming with OpenGL Part 2: Complete Programs Ed Angel Professor.
GLUT functions glutInit allows application to get command line arguments and initializes system gluInitDisplayMode requests properties for the window.
Programming with OpenGL Part 2: Complete Programs Ed Angel Professor of Emeritus of Computer Science University of New Mexico.
Programming with OpenGL Part 2: Complete Programs Ed Angel Professor of Emeritus of Computer Science University of New Mexico.
Graphics: Conceptual Model
1 Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Programming with OpenGL Part 3: Three Dimensions Ed Angel Professor of Computer Science,
1 Programming with OpenGL Part 2: Complete Programs.
OpenGL API 2D Graphic Primitives Angel Angel: Interactive Computer Graphics5E © Addison-Wesley
31/1/2006Based on: Angel (4th Edition) & Akeine-Möller & Haines (2nd Edition)1 CSC345: Advanced Graphics & Virtual Environments Lecture 2: Introduction.
Introduction to Graphics Programming. Graphics API.
Graphics Graphics Korea University kucg.korea.ac.kr Graphics Programming 고려대학교 컴퓨터 그래픽스 연구실.
Computer Graphics I, Fall Programming with OpenGL Part 2: Complete Programs.
INTRODUCTION TO OPENGL
Computer Graphics (Fall 2003) COMS 4160, Lecture 5: OpenGL 1 Ravi Ramamoorthi Many slides courtesy Greg Humphreys.
CS 480/680 Computer Graphics Programming with Open GL Part 2: Complete Programs Dr. Frederick C Harris, Jr. Fall 2011.
Program Studi S-1 Teknik Informatika FMIPA Universitas Padjadjaran
The Human Visual System vs The Pinhole camera
Programming with OpenGL Part 0: 3D API
Programming with OpenGL Part 1: Background
Programming with OpenGL Part 2: Complete Programs
Programming with OpenGL Part 1: Background
Materi Anatomi OpenGL Fungsi GLUT Posisi Kamera Proyeksi
Programming with OpenGL Part 3: Three Dimensions
Programming with OpenGL Part 2: Complete Programs
OpenGL (Open Graphics Library) Mr. B.A.Swamy Assistant Professor Dept of CSE.
Lab 3 Geometric Drawing Lab 3 Geometric Drawing.
Starting to draw dealing with Windows which libraries? clipping
OpenGL.
גרפיקה ממוחשבת: מבוא ל-OpenGL
Introduction to Computer Graphics with WebGL
Programming with OpenGL Part 4: Color and Attributes
Introduction to Computer Graphics with WebGL
Introduction to Computer Graphics with WebGL
Drawing in the plane 455.
Programming with OpenGL Part 3: Three Dimensions
Introduction to OpenGL
Programming with OpenGL Part 2: Complete Programs
Programming with OpenGL Part 2: Complete Programs
Programming with OpenGL Part 2: Complete Programs
Programming with OpenGL Part 1: Background
Starting to draw dealing with Windows which libraries? clipping
Programming with OpenGL Part 3: Three Dimensions
Programming with OpenGL Part 4: Color and Attributes
Programming with OpenGL Part 2: Complete Programs
Programming with OpenGL Part 2: Complete Programs
Angel: Interactive Computer Graphics5E © Addison-Wesley 2009
Programming with OpenGL Part 3: Three Dimensions
Angel: Interactive Computer Graphics5E © Addison-Wesley 2009
Presentation transcript:

OpenGL API 2D Graphic Primitives Angel 2.1-2.4 Angel: Interactive Computer Graphics5E © Addison-Wesley 2009

More Programming with OpenGL Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Objectives Refine the first program Alter the default values Introduce a standard program structure Simple viewing Two-dimensional viewing as a special case of three-dimensional viewing Fundamental OpenGL primitives Attributes Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Program Structure Most OpenGL programs have a similar structure that consists of the following functions main(): defines the callback functions opens one or more windows with the required properties enters event loop (last executable statement) init(): sets the state variables Viewing Attributes callbacks Display function Input and window functions Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 simple.c revisited In this version, we shall see the same output but we have defined all the relevant state values through function calls using the default values In particular, we set Colors Viewing conditions Window properties Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 main.c #include <GL/glut.h> int main(int argc, char** argv) { glutInit(&argc,argv); glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB); glutInitWindowSize(500,500); glutInitWindowPosition(0,0); glutCreateWindow("simple"); glutDisplayFunc(mydisplay); init(); glutMainLoop(); } includes gl.h define window properties display callback set OpenGL state enter event loop Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 GLUT functions glutInit allows application to get command line arguments and initializes system gluInitDisplayMode requests properties for the window (the rendering context) RGB color Single buffering Properties logically ORed together glutWindowSize in pixels glutWindowPosition from top-left corner of display glutCreateWindow create window with title “simple” glutDisplayFunc display callback glutMainLoop enter infinite event loop Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 init.c void init() { glClearColor (0.0, 0.0, 0.0, 1.0); glColor3f(1.0, 1.0, 1.0); glMatrixMode (GL_PROJECTION); glLoadIdentity (); glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0); } black clear color opaque window fill/draw with white viewing volume Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Coordinate Systems The units in glVertex are determined by the application and are called object or problem coordinates The viewing specifications are also in object coordinates and it is the size of the viewing volume that determines what will appear in the image Internally, OpenGL will convert to camera (eye) coordinates and later to screen coordinates OpenGL also uses some internal representations that usually are not visible to the application Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 OpenGL Camera OpenGL places a camera at the origin in object space pointing in the negative z direction The default viewing volume is a box centered at the origin with a side of length 2 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Orthographic Viewing In the default orthographic view, points are projected forward along the z axis onto the plane z=0 z=0 z=0 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Transformations and Viewing In OpenGL, projection is carried out by a projection matrix (transformation) There is only one set of transformation functions so we must set the matrix mode first glMatrixMode (GL_PROJECTION) Transformation functions are incremental so we start with an identity matrix and alter it with a projection matrix that gives the view volume glLoadIdentity(); glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0); Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Two- and three-dimensional viewing In glOrtho(left, right, bottom, top, near, far) the near and far distances are measured from the camera Two-dimensional vertex commands place all vertices in the plane z=0 If the application is in two dimensions, we can use the function gluOrtho2D(left, right,bottom,top) In two dimensions, the view or clipping volume becomes a clipping window Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 mydisplay.c void mydisplay() { glClear(GL_COLOR_BUFFER_BIT); glBegin(GL_POLYGON); glVertex2f(-0.5, -0.5); glVertex2f(-0.5, 0.5); glVertex2f(0.5, 0.5); glVertex2f(0.5, -0.5); glEnd(); glFlush(); } Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 OpenGL Primitives GL_POINTS GL_POLYGON GL_LINE_STRIP GL_LINES GL_LINE_LOOP GL_TRIANGLES GL_QUAD_STRIP GL_TRIANGLE_STRIP GL_TRIANGLE_FAN Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Polygon Issues OpenGL will only display polygons correctly that are Simple: edges cannot cross Convex: All points on line segment between two points in a polygon are also in the polygon Flat: all vertices are in the same plane User program can check if above true OpenGL will produce output if these conditions are violated but it may not be what is desired Triangles satisfy all conditions nonconvex polygon nonsimple polygon Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009