Pressure and Temperature Dependence of Growth and Morphology of Escherichia coli: Experiments and Stochastic Model  Pradeep Kumar, Albert Libchaber  Biophysical.

Slides:



Advertisements
Similar presentations
Volume 111, Issue 7, Pages (October 2016)
Advertisements

3-D Particle Tracking in a Two-Photon Microscope: Application to the Study of Molecular Dynamics in Cells  Valeria Levi, QiaoQiao Ruan, Enrico Gratton 
Rapid Assembly of a Multimeric Membrane Protein Pore
Precision and Variability in Bacterial Temperature Sensing
Volume 109, Issue 11, Pages (December 2015)
Dynamics of Active Semiflexible Polymers
Volume 109, Issue 8, Pages (October 2015)
Lara Scharrel, Rui Ma, René Schneider, Frank Jülicher, Stefan Diez 
Dynamics of the Serine Chemoreceptor in the Escherichia coli Inner Membrane: A High- Speed Single-Molecule Tracking Study  Dongmyung Oh, Yang Yu, Hochan.
Phase Transitions in Biological Systems with Many Components
Single-Cell Analysis of Growth in Budding Yeast and Bacteria Reveals a Common Size Regulation Strategy  Ilya Soifer, Lydia Robert, Ariel Amir  Current.
Joseph M. Johnson, William J. Betz  Biophysical Journal 
MunJu Kim, Katarzyna A. Rejniak  Biophysical Journal 
Marc Jendrny, Thijs J. Aartsma, Jürgen Köhler  Biophysical Journal 
Pulsatile Lipid Vesicles under Osmotic Stress
He Meng, Johan Bosman, Thijn van der Heijden, John van Noort 
Fuqing Wu, David J. Menn, Xiao Wang  Chemistry & Biology 
Serapion Pyrpassopoulos, Henry Shuman, E. Michael Ostap 
DNA Translocation Governed by Interactions with Solid-State Nanopores
Emily I. Bartle, Tara M. Urner, Siddharth S. Raju, Alexa L. Mattheyses 
Cellular Contraction Can Drive Rapid Epithelial Flows
Yong Wang, Paul Penkul, Joshua N. Milstein  Biophysical Journal 
Volume 113, Issue 6, Pages (September 2017)
Physiological Pathway of Magnesium Influx in Rat Ventricular Myocytes
Aida Ebrahimi, Laszlo N. Csonka, Muhammad A. Alam  Biophysical Journal 
Xiao-Han Li, Elizabeth Rhoades  Biophysical Journal 
Abir M. Kabbani, Christopher V. Kelly  Biophysical Journal 
Kinesin Moving through the Spotlight: Single-Motor Fluorescence Microscopy with Submillisecond Time Resolution  Sander Verbrugge, Lukas C. Kapitein, Erwin.
Protein Fibrillation Lag Times During Kinetic Inhibition
Martin Clausen, Michael Koomey, Berenike Maier  Biophysical Journal 
Actin Assembly at Model-Supported Lipid Bilayers
Volume 111, Issue 12, Pages (December 2016)
Volume 99, Issue 8, Pages (October 2010)
Volume 105, Issue 1, Pages (July 2013)
Volume 107, Issue 8, Pages (October 2014)
Quantitative Image Restoration in Bright Field Optical Microscopy
Rapid Assembly of a Multimeric Membrane Protein Pore
Stochastic Pacing Inhibits Spatially Discordant Cardiac Alternans
Volume 96, Issue 5, Pages (March 2009)
Comparative Studies of Microtubule Mechanics with Two Competing Models Suggest Functional Roles of Alternative Tubulin Lateral Interactions  Zhanghan.
Saswata Sankar Sarkar, Jayant B. Udgaonkar, Guruswamy Krishnamoorthy 
Volume 103, Issue 5, Pages (September 2012)
Dynamics of Active Semiflexible Polymers
The Stochastic Search Dynamics of Interneuron Migration
Physical Modeling of Dynamic Coupling between Chromosomal Loci
Chemically Mediated Mechanical Expansion of the Pollen Tube Cell Wall
Blocking of Single α-Hemolysin Pore by Rhodamine Derivatives
Volume 83, Issue 5, Pages (November 2002)
Volume 105, Issue 10, Pages (November 2013)
Robust Driving Forces for Transmembrane Helix Packing
Andrew E. Blanchard, Chen Liao, Ting Lu  Biophysical Journal 
Volume 101, Issue 3, Pages (August 2011)
Volume 108, Issue 9, Pages (May 2015)
Quantification of Fluorophore Copy Number from Intrinsic Fluctuations during Fluorescence Photobleaching  Chitra R. Nayak, Andrew D. Rutenberg  Biophysical.
Stochastic Pacing Inhibits Spatially Discordant Cardiac Alternans
Emily I. Bartle, Tara M. Urner, Siddharth S. Raju, Alexa L. Mattheyses 
John E. Pickard, Klaus Ley  Biophysical Journal 
How Cells Tiptoe on Adhesive Surfaces before Sticking
Volume 107, Issue 3, Pages (August 2014)
Yongli Zhang, Junyi Jiao, Aleksander A. Rebane  Biophysical Journal 
Volume 112, Issue 3, Pages (February 2017)
Volume 104, Issue 4, Pages (February 2013)
The Role of Network Architecture in Collagen Mechanics
Experimental Verification of the Behavioral Foundation of Bacterial Transport Parameters Using Microfluidics  Tanvir Ahmed, Roman Stocker  Biophysical.
Volume 111, Issue 4, Pages (August 2016)
Volume 114, Issue 6, Pages (March 2018)
Simulating the Entropic Collapse of Coarse-Grained Chromosomes
Volume 108, Issue 8, Pages (April 2015)
Volume 108, Issue 9, Pages (May 2015)
George D. Dickinson, Ian Parker  Biophysical Journal 
Presentation transcript:

Pressure and Temperature Dependence of Growth and Morphology of Escherichia coli: Experiments and Stochastic Model  Pradeep Kumar, Albert Libchaber  Biophysical Journal  Volume 105, Issue 3, Pages 783-793 (August 2013) DOI: 10.1016/j.bpj.2013.06.029 Copyright © 2013 Biophysical Society Terms and Conditions

Figure 1 Schematic of the experimental setup to measure bacterial growth. Biophysical Journal 2013 105, 783-793DOI: (10.1016/j.bpj.2013.06.029) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 2 Set of three growth curves at P = 1 atm and T = 37°C. τ is the doubling time in minutes. The typical error on τ in our experiments is ∼10% of the value of τ. Biophysical Journal 2013 105, 783-793DOI: (10.1016/j.bpj.2013.06.029) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 3 (a) Growth curves at different pressures for T = 31°C. (b) Growth curves at different pressures for T = 34°C. (c) Doubling time τ(P) extracted from Fig. 3 a. (d) Doubling time τ(P) extracted from Fig. 3 b. Pressure dependence of τ(P) is marked by a sharp increase at high pressures where the cells still grow, but the growth is extremely slow. Biophysical Journal 2013 105, 783-793DOI: (10.1016/j.bpj.2013.06.029) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 4 Dependence of τ(P) for two different temperatures T = 31°C (solid black circles) and T = 34°C (solid red squares) on a linear-log plot. Error bars plotted are the estimated 10% error on the values of τ (see Fig. 2 for details). The low-pressure linear dependence on a linear-log plot suggests that τ(P) follows an exponential behavior. The discontinuous jump in τ(P) at a given temperature is marked by its departure from the initial exponential behavior. Biophysical Journal 2013 105, 783-793DOI: (10.1016/j.bpj.2013.06.029) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 5 Pressure-temperature surface plot of doubling time τ(P,T). (Solid red circles) Experimental data points. (Blue dotted line) Loci of the points where τ changes abruptly. (Purple dotted line) dP/dt < 0 is the region separating anomalous pressure dependence of the doubling time. (Color bar) Value of τ in minutes. Biophysical Journal 2013 105, 783-793DOI: (10.1016/j.bpj.2013.06.029) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 6 Progressive elongation of bacterial cells at different pressures for T = 31°C: (a) 1 atm, (b) 50 atm, (c) 100 atm, (d) 200 atm, (e) 250 atm, and (f) 300 atm. The images were taken and analyzed at the end of experiments for all the pressures. (g) Bright-field images of bacteria at P = 200 atm at 100× magnification, suggesting that bacteria still retain the normal morphology. (h) A fluorescent image of an elongated bacteria at P = 200 atm and T = 31°C, showing the DNA (blue). Our experiments suggest that the cells are able to replicate DNA faithfully in the range of pressure and temperature where elongation is observed. Biophysical Journal 2013 105, 783-793DOI: (10.1016/j.bpj.2013.06.029) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 7 Histogram of length of bacterial cells at different pressures for T = 31°C: (a) 1 atm, (b) 100 atm, (c) 200 atm, and (d) 300 atm. Also shown are the Gaussian fits to the distribution. At high pressures, the distribution P(l) becomes increasingly non-Gaussian and develop a long tail. Biophysical Journal 2013 105, 783-793DOI: (10.1016/j.bpj.2013.06.029) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 8 Average bacterial cell length 〈l〉 as a function of pressure at T = 31°C. Average length of bacterial cells shows a sharp transition between P = 250 and 300 atm. Biophysical Journal 2013 105, 783-793DOI: (10.1016/j.bpj.2013.06.029) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 9 Schematic of the stochastic irreversible switching of normal bacterial cell (blue) to elongating bacterial cells (red). A normal cell can either divide into two cells with probability α or switch to an elongating phenotype with a probability β. Once a bacterial cell’s fate changes to elongating cell type, it just grows without dividing. Biophysical Journal 2013 105, 783-793DOI: (10.1016/j.bpj.2013.06.029) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 10 (a) Evolution of the distribution of the length of bacterial cells for β = 0.5. (b) Model prediction of the average length as a function of switching probability β. Biophysical Journal 2013 105, 783-793DOI: (10.1016/j.bpj.2013.06.029) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 11 Comparison of model prediction of Pn(l) with experimental data at P = 300 atm and T = 31°C with model parameters β = 0.5 and n = 6. (Solid black line) Experimental data. (Dashed red line) Model prediction. Biophysical Journal 2013 105, 783-793DOI: (10.1016/j.bpj.2013.06.029) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 12 (a) Dependence of switching probability β on pressure for T = 31°C. The value β increases monotonically with increasing pressure. (b) Dependence of the non-Gaussian parameter of the distribution ϕ on the switching probability β. (Solid black curve) Model data. We have also plotted the values of β extracted from experimental distribution of cell length at T = 31°C for pressures P = 50, 100, 150, and 200 atm (solid red circles). Biophysical Journal 2013 105, 783-793DOI: (10.1016/j.bpj.2013.06.029) Copyright © 2013 Biophysical Society Terms and Conditions