Voice Cells in the Primate Temporal Lobe

Slides:



Advertisements
Similar presentations
Heather L. Dean, Maureen A. Hagan, Bijan Pesaran  Neuron 
Advertisements

Volume 86, Issue 3, Pages (May 2015)
Araceli Ramirez-Cardenas, Maria Moskaleva, Andreas Nieder 
Volume 58, Issue 3, Pages (May 2008)
Michael S Beauchamp, Kathryn E Lee, Brenna D Argall, Alex Martin 
Analysis of the Neuronal Selectivity Underlying Low fMRI Signals
Aaron R. Seitz, Praveen K. Pilly, Christopher C. Pack  Current Biology 
Responses to Spatial Contrast in the Mouse Suprachiasmatic Nuclei
Ji Dai, Daniel I. Brooks, David L. Sheinberg  Current Biology 
Linking Electrical Stimulation of Human Primary Visual Cortex, Size of Affected Cortical Area, Neuronal Responses, and Subjective Experience  Jonathan.
Volume 83, Issue 3, Pages (August 2014)
Heather L. Dean, Maureen A. Hagan, Bijan Pesaran  Neuron 
Volume 27, Issue 2, Pages (January 2017)
Volume 67, Issue 6, Pages (September 2010)
Volume 17, Issue 13, Pages (July 2007)
A Neural Mechanism for Sensing and Reproducing a Time Interval
Inducing Gamma Oscillations and Precise Spike Synchrony by Operant Conditioning via Brain-Machine Interface  Ben Engelhard, Nofar Ozeri, Zvi Israel, Hagai.
Rodrigo Quian Quiroga, Alexander Kraskov, Christof Koch, Itzhak Fried 
Differential Impact of Behavioral Relevance on Quantity Coding in Primate Frontal and Parietal Neurons  Pooja Viswanathan, Andreas Nieder  Current Biology 
A Channel for 3D Environmental Shape in Anterior Inferotemporal Cortex
Yukiyasu Kamitani, Frank Tong  Current Biology 
Volume 18, Issue 4, Pages (January 2017)
Volume 27, Issue 19, Pages e2 (October 2017)
Volume 49, Issue 3, Pages (February 2006)
Human Cortical Neurons in the Anterior Temporal Lobe Reinstate Spiking Activity during Verbal Memory Retrieval  Anthony I. Jang, John H. Wittig, Sara.
Gamma and the Coordination of Spiking Activity in Early Visual Cortex
Volume 71, Issue 4, Pages (August 2011)
Benedikt Zoefel, Alan Archer-Boyd, Matthew H. Davis  Current Biology 
Integration of Touch and Sound in Auditory Cortex
Volume 89, Issue 5, Pages (March 2016)
Volume 97, Issue 3, Pages e8 (February 2018)
Michael S Beauchamp, Kathryn E Lee, Brenna D Argall, Alex Martin 
Single-Unit Responses Selective for Whole Faces in the Human Amygdala
Anubhuti Goel, Dean V. Buonomano  Neuron 
A. Saez, M. Rigotti, S. Ostojic, S. Fusi, C.D. Salzman  Neuron 
Walking Modulates Speed Sensitivity in Drosophila Motion Vision
Benjamin Scholl, Daniel E. Wilson, David Fitzpatrick  Neuron 
Kevin Wood Bieri, Katelyn N. Bobbitt, Laura Lee Colgin  Neuron 
Natalja Gavrilov, Steffen R. Hage, Andreas Nieder  Cell Reports 
How Local Is the Local Field Potential?
Volume 28, Issue 9, Pages e4 (May 2018)
Volume 80, Issue 4, Pages (November 2013)
Perception Matches Selectivity in the Human Anterior Color Center
Neuronal Response Gain Enhancement prior to Microsaccades
Volume 89, Issue 5, Pages (March 2016)
Volume 54, Issue 2, Pages (April 2007)
Volume 86, Issue 3, Pages (May 2015)
Xiaomo Chen, Marc Zirnsak, Tirin Moore  Cell Reports 
Timing, Timing, Timing: Fast Decoding of Object Information from Intracranial Field Potentials in Human Visual Cortex  Hesheng Liu, Yigal Agam, Joseph.
Elena A. Allen, Erik B. Erhardt, Vince D. Calhoun  Neuron 
Stephen V. David, Benjamin Y. Hayden, James A. Mazer, Jack L. Gallant 
Robust Selectivity to Two-Object Images in Human Visual Cortex
Benjamin Scholl, Daniel E. Wilson, David Fitzpatrick  Neuron 
Vahe Poghosyan, Andreas A. Ioannides  Neuron 
Facial-Expression and Gaze-Selective Responses in the Monkey Amygdala
Local Origin of Field Potentials in Visual Cortex
Encoding of Stimulus Probability in Macaque Inferior Temporal Cortex
Tuning to Natural Stimulus Dynamics in Primary Auditory Cortex
Volume 24, Issue 8, Pages e6 (August 2018)
Volume 16, Issue 20, Pages (October 2006)
When Correlation Implies Causation in Multisensory Integration
Volume 17, Issue 15, Pages (August 2007)
Daniela Vallentin, Andreas Nieder  Current Biology 
Social Information Signaling by Neurons in Primate Striatum
Honghui Zhang, Andrew J. Watrous, Ansh Patel, Joshua Jacobs  Neuron 
Volume 67, Issue 6, Pages (September 2010)
Christoph Kayser, Nikos K. Logothetis, Stefano Panzeri  Current Biology 
Anubhuti Goel, Dean V. Buonomano  Neuron 
Supratim Ray, John H.R. Maunsell  Neuron 
Neurophysiology of the BOLD fMRI Signal in Awake Monkeys
Presentation transcript:

Voice Cells in the Primate Temporal Lobe Catherine Perrodin, Christoph Kayser, Nikos K. Logothetis, Christopher I. Petkov  Current Biology  Volume 21, Issue 16, Pages 1408-1415 (August 2011) DOI: 10.1016/j.cub.2011.07.028 Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 1 Targeting the Anterior FMRI Voice Cluster for Electrophysiological Recordings (A) Sagittal structural magnetic resonance imaging (MRI) of the liquid-filled recording chamber (white bar above brain, with vertical white line projecting to the supratemporal plane [STP] below the lateral sulcus [LS]). Brainsight and stereotaxic coordinates guided electrode placement to the anterior functional MRI (fMRI) voxels (red) with a strong preference for MVocs. (B) Axial slice from (A), including the separately localized auditory fields (black outlines); see [7, 43]. Anteroposterior (AP) and mediolateral (ML) coordinates are shown for the fMRI (left) and the electrophysiological recording sites (right). The stereotaxic coordinates used the Frankfurt-zero standard, where the origin is defined as the midpoint of the interaural line and the infraorbital plane. (C) Exemplary voice cell (SUA) and multiunit activity (MUA) exhibiting preferential responses to MVocs, including voice-selectivity index (VSI) values (see Experimental Procedures; Figure 3). See also Figure S1E. Current Biology 2011 21, 1408-1415DOI: (10.1016/j.cub.2011.07.028) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 2 Neuronal Preferred Sound Categories in the Anterior FMRI Voice Cluster (A) Proportion of auditory-responsive units (MUA) as a function of the sound category eliciting the maximal response (SUA results in inset), χ2-test; ∗p < 0.05; ∗∗p < 0.01. (B) Average population spiking response to the three sound categories. The color shading indicates the 95% confidence interval for each response. The gray shaded area indicates the time interval in the cumulative spiking response (see Figure S2B) during which the population preference for MVocs versus mean (AVocs, NSnds) is significant (paired-sample t test; see Figure S2E). The bar plot (right) shows the mean ± standard error of the mean (SEM) average response amplitudes for each category (paired-sample t test; ∗p < 0.05; ∗∗p < 0.01). (C) Average local-field potential (LFP) responses (standard deviation [SD] from baseline) over all auditory-responsive sites (mean and 95% confidence interval). Shaded area indicates the time points with significant MVocs preference (paired-sample t test, MVocs versus mean [AVocs, NSnds]; see Figure S2E) in the cumulative LFP response (see Figure S2D). Current Biology 2011 21, 1408-1415DOI: (10.1016/j.cub.2011.07.028) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 3 Neuronal Sound-Category Preferences Using the Voice-Selectivity Index (A) Significant proportions of voice cells were observed (defined as SUA with a strong preference for MVocs, see red bar, i.e., a VSI value greater than or equal to 1/3). Cells with a preference for another sound category (shown in black bars) did not exceed chance levels. The horizontal black line indicates the chance level, and the shaded gray area indicates the two-tailed, 95% confidence interval, estimated using a bootstrap procedure consisting of shuffled category labels for every unit (n = 1,000 iterations). (B) Restricting the analysis to a focal cluster of sites (three neighboring grid holes with the largest density of MVocs-preferring units, see right panel) resulted in 55% of the MUA meeting the VSI-based criterion as in (A). See also Figure S3. Current Biology 2011 21, 1408-1415DOI: (10.1016/j.cub.2011.07.028) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 4 Selectivity for MVocs Stimuli and Voice Versus Face Cell Comparisons (A) Distribution of response selectivity values across MVocs-preferring cells (SUA). Selectivity was computed as the percentage of the 12 stimuli from the MVocs sound category eliciting responses larger than half of the maximum (>HM) response for each cell. (B) Distribution of effective calls for the population of identified voice cells (n = 21). A black square indicates that the particular MVoc stimulus elicited a response larger than half of the maximum response for a particular voice cell. See text for comparisons of voice versus call-type responses. (C) Comparison of the average selectivity values for voice-preferring cells with values reported for face-preferring cells in the visual system [8, 9]. Shown is mean ± SEM. (D) Comparison of sparseness index values for voice cells to values reported for face cells [10] (see Supplemental Experimental Procedures for details). Shown is mean ± SEM. Current Biology 2011 21, 1408-1415DOI: (10.1016/j.cub.2011.07.028) Copyright © 2011 Elsevier Ltd Terms and Conditions