The Structure and Function of Large Biological Molecules

Slides:



Advertisements
Similar presentations
THE STRUCTURE AND FUNCTION OF MACROMOLECULES
Advertisements

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 5.4: Proteins have many structures, resulting in a wide range of functions.
Cohesion Collectively, hydrogen bonds hold water molecules together, a phenomenon called cohesion Cohesion helps the transport of water against gravity.
The Structure and Function of Macromolecules: Carbohydrates, Lipids & Phospholipids.
Biology 112 Chapter 5 Macromolecules. All living things are made up of four classes of large biological molecules: carbohydrates, lipids, proteins, and.
Lipids are a diverse group of hydrophobic molecules Lipids are the one class of large biological molecules that do not form polymers Lipids are hydrophobic.
Building Blocks of Life An Introduction. Carbon—The Backbone of Biological Molecules Carbon is unparalleled in its ability to form large, complex, and.
Unit 1 – The Chemistry of Life
Structure & Function of Large Biological Molecules (Macromolecules)
The Structure and Function of Macromolecules
Carbohydrates & Lipids
Review Questions 1. How are polymers formed (what type of reaction)? 2. What occurs in this reaction? 3. How are polymers broken down (what type of reaction)?
Chapter 5.
Focus on: u Elements in each molecule u How molecules are linked and unlinked u Examples and functions of each type of molecule.
CHAPTERS 2 & 3 Continued The CHEMISTRY of LIFE. All Living Organisms are Highly Organized.
Carbohydrates, Proteins, Lipids, and Nucleic Acids
The structure and function of Macromolecules
The Structure and Function of Large Biological Molecules Chapter 5.
The Structure and Function of Macromolecules
Chapter 5: Macromolecules Macromolecules A large molecule in a living organism –Proteins, Carbohydrates, Nucleic Acids Polymer- long molecules built.
Proteins have many structures, resulting in a wide range of functions
Glucose (a) Linear and ring forms(b) Abbreviated ring structure.
AP Biology Chapter 5. Macromolecules. AP Biology Macromolecules  Smaller organic molecules join together to form larger molecules.
Carbon and biological Macromolecules Zakk Drumm Torpey White Ryan O’Kane.
Cohesion Collectively, hydrogen bonds hold water molecules together, a phenomenon called cohesion Cohesion helps the transport of water against gravity.
Chapter 5: The Structure and Function of Macromolecules.
Marvelous Macromolecules Chapter 5 Macromolecules Large molecules formed by joining smaller organic molecules Four Major Classes Carbohydrates Lipids.
AP Biology Chapter 5. Macromolecules. AP Biology Macromolecules  Smaller organic molecules join together to form larger molecules.
The Structure and Function of Large Biological Molecules
Macromolecules Goal Know the structure and function of all 4 macromolecules.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Overview: The Molecules of Life Within cells, small organic molecules are joined.
5.4: Proteins Introduction
4.A.1 Biomolecules The subcomponents of biological molecules and their sequence determine the properties of that molecule. Read chapter 5 and complete.
The Structure and Function of Large Biological Molecules Chapter 5.
Ch 5. Large Biological Molecules Critically important molecules in all living things divided into 4 classes: Lipids (fats) Carbohydrates (sugars) Proteins.
4.A.1 Biomolecules The subcomponents of biological molecules and their sequence determine the properties of that molecule.
The Structure and Function of Large Biological Molecules Lipids
Unit 4.A 1 – Biomolecules.
Structure and Function of Large Biological Molecules
Large Molecules are the Hallmark of Life
AP Bio Chapter 3 Organic chemistry.
Essential knowledge 4.A.1:
Dehydration removes a water molecule, forming a new bond H2O
Chapter 5 The Structure and Functions of Large Biological Molecules
The Chemical Building Blocks of Life
Carbon Compounds Chapter 2.3.
Molecules of Life All living things are made up of four classes of large molecules: Carbohydrates, lipids, proteins, and nucleic acids. Macromolecules.
The Structure and Function of Large Biological Molecules
THE STRUCTURE AND FUNCTION OF MACROMOLECULES
The Structure and Function of Macromolecules
Macromolecules Carbohydrates Proteins Lipids Nucleic Acids
Marvelous Macromolecules
Concept 5.3: Lipids are a diverse group of hydrophobic molecules
Carbohydrates and Lipids
The Structure and Function of Large Biological Molecules
Amino acids are linked by peptide bonds
Proteins account for more than 50% of the dry mass of most cells
KEY CONCEPT Carbon-based molecules are the foundation of life.
Chapter 2 The Chemistry of Life Part 2
Concept 5.5: Nucleic acids store and transmit hereditary information
The Structure and Function of Large Biological Molecules
Macromolecules Introduction
The Structure and Function of Macromolecules
The structure and Function of Macromolecules
Proteins account for more than 50% of the dry mass of most cells
1.0 MOLECULES OF LIFE BY : MDM. NURFAZLINI ISMAIL (MDM FAZ)
The Structure and Function of Macromolecules
The Structure and Function of Large Biological Molecules
Presentation transcript:

The Structure and Function of Large Biological Molecules Chapter 5 The Structure and Function of Large Biological Molecules

Overview: The Molecules of Life All living things are made up of four classes of large biological molecules: carbohydrates, lipids, proteins, and nucleic acids Within cells, small organic molecules are joined together to form larger molecules Macromolecules are large molecules composed of thousands of covalently connected atoms Molecular structure and function are inseparable Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 5-1 Figure 5.1 Why do scientists study the structures of macromolecules?

Concept 5.1: Macromolecules are polymers, built from monomers These small building-block molecules are called monomers A polymer is a long molecule consisting of many similar building blocks Three of the four classes of life’s organic molecules are polymers: Carbohydrates Proteins Nucleic acids Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

The Synthesis and Breakdown of Polymers A condensation reaction or more specifically a dehydration reaction occurs when two monomers bond together through the loss of a water molecule Enzymes are macromolecules that speed up the dehydration process Polymers are disassembled to monomers by hydrolysis, a reaction that is essentially the reverse of the dehydration reaction Animation: Polymers Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Dehydration removes a water molecule, forming a new bond H2O Fig. 5-2a HO 1 2 3 H HO H Short polymer Unlinked monomer Dehydration removes a water molecule, forming a new bond H2O Figure 5.2 The synthesis and breakdown of polymers HO 1 2 3 4 H Longer polymer (a) Dehydration reaction in the synthesis of a polymer

HO 1 2 3 4 H H2O HO 1 2 3 H HO H (b) Hydrolysis adds a water Fig. 5-2b HO 1 2 3 4 H Hydrolysis adds a water molecule, breaking a bond H2O Figure 5.2 The synthesis and breakdown of polymers HO 1 2 3 H HO H (b) Hydrolysis of a polymer

Glucose (C6H12O6) is the most common monosaccharide Sugars Monosaccharides have molecular formulas that are usually multiples of CH2O Glucose (C6H12O6) is the most common monosaccharide Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Though often drawn as linear skeletons, in aqueous solutions many sugars form rings Monosaccharides serve as a major fuel for cells and as raw material for building molecules Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

(a) Linear and ring forms (b) Abbreviated ring structure Fig. 5-4 (a) Linear and ring forms Figure 5.4 Linear and ring forms of glucose (b) Abbreviated ring structure

Animation: Disaccharides A disaccharide is formed when a dehydration reaction joins two monosaccharides This covalent bond is called a glycosidic linkage Animation: Disaccharides Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

(a) Dehydration reaction in the synthesis of maltose Fig. 5-5 1–4 glycosidic linkage Glucose Glucose Maltose (a) Dehydration reaction in the synthesis of maltose 1–2 glycosidic linkage Figure 5.5 Examples of disaccharide synthesis Glucose Fructose Sucrose (b) Dehydration reaction in the synthesis of sucrose

Storage Polysaccharides Starch, a storage polysaccharide of plants, consists entirely of glucose monomers Plants store surplus starch as granules within chloroplasts and other plastids Glycogen is a storage polysaccharide in animals Humans and other vertebrates store glycogen mainly in liver and muscle cells Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

(a) Starch: a plant polysaccharide Fig. 5-6 Chloroplast Starch Mitochondria Glycogen granules 0.5 µm 1 µm Figure 5.6 Storage polysaccharides of plants and animals Amylose Glycogen Amylopectin (a) Starch: a plant polysaccharide (b) Glycogen: an animal polysaccharide

Structural Polysaccharides The polysaccharide cellulose is a major component of the tough wall of plant cells Like starch, cellulose is a polymer of glucose, but the glycosidic linkages differ The difference is based on two ring forms for glucose: alpha () and beta () Animation: Polysaccharides Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

(a)  and  glucose ring structures Fig. 5-7a  Glucose  Glucose Figure 5.7 Starch and cellulose structures (a)  and  glucose ring structures

(b) Starch: 1–4 linkage of  glucose monomers Fig. 5-7bc (b) Starch: 1–4 linkage of  glucose monomers Figure 5.7 Starch and cellulose structures (c) Cellulose: 1–4 linkage of  glucose monomers

Cell walls Cellulose microfibrils in a plant cell wall Microfibril Fig. 5-8 Cell walls Cellulose microfibrils in a plant cell wall Microfibril 10 µm 0.5 µm Cellulose molecules Figure 5.8 The arrangement of cellulose in plant cell walls Glucose monomer

Enzymes that digest starch by hydrolyzing  linkages can’t hydrolyze  linkages in cellulose Cellulose in human food passes through the digestive tract as insoluble fiber. Irritates the lining of the digestive system, causing more frequent bowel movements and preventing constipation. “roughage” Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Some microbes use enzymes to digest cellulose Fig. 5-9 Some microbes use enzymes to digest cellulose Many herbivores, from cows to termites, have symbiotic relationships with these microbes Figure 5.9 Cellulose-digesting prokaryotes are found in grazing animals such as this cow

Chitin, another structural polysaccharide, is found in the exoskeleton of arthropods Chitin also provides structural support for the cell walls of many fungi Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

(a) The structure of the chitin monomer. (b) (c) Chitin forms the Fig. 5-10 (a) The structure of the chitin monomer. (b) Chitin forms the exoskeleton of arthropods. (c) Chitin is used to make a strong and flexible surgical thread. Figure 5.10 Chitin, a structural polysaccharide

Concept 5.3: Lipids are a diverse group of hydrophobic molecules Lipids are the one class of large biological molecules that do not form polymers The unifying feature of lipids is having little or no affinity for water (hydrophobic) The most biologically important lipids are fats, phospholipids, and steroids Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fats Fats are constructed from two types of smaller molecules: glycerol and fatty acids Glycerol is a three-carbon alcohol with a hydroxyl group attached to each carbon A fatty acid consists of a carboxyl group attached to a long carbon skeleton Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fatty acid (palmitic acid) Fig. 5-11 Fatty acid (palmitic acid) Glycerol (a) Dehydration reaction in the synthesis of a fat Ester linkage Figure 5.11 The synthesis and structure of a fat, or triacylglycerol (b) Fat molecule (triacylglycerol)

Fats separate from water because water molecules form hydrogen bonds with each other and exclude the fats In a fat, three fatty acids are joined to glycerol by an ester linkage, creating a triacylglycerol, or triglyceride Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Unsaturated fatty acids have one or more double bonds Fatty acids vary in length (number of carbons) and in the number and locations of double bonds Saturated fatty acids have the maximum number of hydrogen atoms possible and no double bonds Unsaturated fatty acids have one or more double bonds Animation: Fats Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Structural formula of a saturated fat molecule Stearic acid, a Fig. 5-12a Structural formula of a saturated fat molecule Figure 5.12 Examples of saturated and unsaturated fats and fatty acids Stearic acid, a saturated fatty acid (a) Saturated fat

unsaturated fatty acid Oleic acid, an cis double bond causes bending Fig. 5-12b Structural formula of an unsaturated fat molecule Oleic acid, an unsaturated fatty acid Figure 5.12 Examples of saturated and unsaturated fats and fatty acids cis double bond causes bending (b) Unsaturated fat

Most animal fats are saturated Fats made from saturated fatty acids are called saturated fats, and are solid at room temperature Most animal fats are saturated Fats made from unsaturated fatty acids are called unsaturated fats or oils, and are liquid at room temperature Plant fats and fish fats are usually unsaturated Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Hydrogenating vegetable oils also creates trans fats A diet rich in saturated fats may contribute to cardiovascular disease through plaque deposits Hydrogenation is the process of converting unsaturated fats to saturated fats by adding hydrogen Hydrogenating vegetable oils also creates trans fats These trans fats may contribute more than saturated fats to cardiovascular disease Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

The major function of fats is energy storage Humans and other mammals store their fat in adipose cells Adipose tissue also cushions vital organs and insulates the body Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Phospholipids In a phospholipid, two fatty acids and a phosphate group are attached to glycerol The two fatty acid tails are hydrophobic, but the phosphate group and its attachments form a hydrophilic head Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Choline Hydrophilic head Phosphate Glycerol Fatty acids Fig. 5-13 Choline Hydrophilic head Phosphate Glycerol Fatty acids Hydrophobic tails Hydrophilic head Figure 5.13 The structure of a phospholipid Hydrophobic tails (a) Structural formula (b) Space-filling model (c) Phospholipid symbol

Phospholipids are the major component of all cell membranes When phospholipids are added to water, they self-assemble into a bilayer, with the hydrophobic tails pointing toward the interior The structure of phospholipids results in a bilayer arrangement found in cell membranes Phospholipids are the major component of all cell membranes Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Hydrophilic head Hydrophobic tail WATER WATER Fig. 5-14 Figure 5.14 Bilayer structure formed by self-assembly of phospholipids in an aqueous environment Hydrophobic tail WATER

Steroids Steroids are lipids characterized by a carbon skeleton consisting of four fused rings Cholesterol, an important steroid, is a component in animal cell membranes Although cholesterol is essential in animals, high levels in the blood may contribute to cardiovascular disease For the Cell Biology Video Space Filling Model of Cholesterol, go to Animation and Video Files. For the Cell Biology Video Stick Model of Cholesterol, go to Animation and Video Files. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 5-15 Figure 5.15 Cholesterol, a steroid

Proteins account for more than 50% of the dry mass of most cells Concept 5.4: Proteins have many structures, resulting in a wide range of functions Proteins account for more than 50% of the dry mass of most cells Protein functions include structural support, storage, transport, cellular communications, movement, and defense against foreign substances PROTEINS ARE THE ONLY MOLECULE DIRECTLY ENCODED FOR BY DNA!!! Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Table 5-1 Table 5-1

Animation: Structural Proteins Animation: Storage Proteins Animation: Transport Proteins Animation: Receptor Proteins Animation: Contractile Proteins Animation: Defensive Proteins Animation: Hormonal Proteins Animation: Sensory Proteins Animation: Gene Regulatory Proteins Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Enzymes are a type of protein that acts as a catalyst to speed up chemical reactions Enzymes can perform their functions repeatedly, functioning as workhorses that carry out the processes of life Animation: Enzymes Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Substrate (sucrose) Glucose Enzyme (sucrase) OH H2O Fructose H O Fig. 5-16 Substrate (sucrose) Glucose Enzyme (sucrase) OH H2O Fructose Figure 5.16 The catalytic cycle of an enzyme H O

Polypeptides are polymers built from the same set of 20 amino acids A protein consists of one or more polypeptides Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Amino acids are organic molecules with carboxyl and amino groups Amino Acid Monomers Amino acids are organic molecules with carboxyl and amino groups Amino acids differ in their properties due to differing side chains, called R groups Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Diverse as proteins are, they are all _1___________ constructed from the same set of _2_________ amino acids. Polymers of amino acids are called __3_______________ . A __4___________ consists of one or more polypeptides folded and coiled into a _5_______________ stucture. polymers 20 polypeptides protein Three-dimensional

Fig. 5-UN1  carbon Amino group Carboxyl group

Amino acids are linked by peptide bonds Amino Acid Polymers Amino acids are linked by peptide bonds A polypeptide is a polymer of amino acids Polypeptides range in length from a few to more than a thousand monomers Each polypeptide has a unique linear sequence of amino acids Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Amino end (N-terminus) Carboxyl end (C-terminus) Fig. 5-18 Peptide bond (a) Side chains Peptide bond Figure 5.18 Making a polypeptide chain Backbone Amino end (N-terminus) Carboxyl end (C-terminus) (b)

Protein Structure and Function A functional protein consists of one or more polypeptides twisted, folded, and coiled into a unique shape Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Sickle-Cell Disease: A Change in Primary Structure A slight change in primary structure can affect a protein’s structure and ability to function Sickle-cell disease, an inherited blood disorder, results from a single amino acid substitution in the protein hemoglobin Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

A protein’s structure determines its function The sequence of amino acids determines a protein’s three-dimensional structure A protein’s structure determines its function Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 5-22 Normal hemoglobin Sickle-cell hemoglobin Primary structure Primary structure Val His Leu Thr Pro Glu Glu Val His Leu Thr Pro Val Glu 1 2 3 4 5 6 7 1 2 3 4 5 6 7 Exposed hydrophobic region Secondary and tertiary structures Secondary and tertiary structures  subunit  subunit     Quaternary structure Normal hemoglobin (top view) Quaternary structure Sickle-cell hemoglobin     Function Molecules do not associate with one another; each carries oxygen. Function Molecules interact with one another and crystallize into a fiber; capacity to carry oxygen is greatly reduced. Figure 5.22 A single amino acid substitution in a protein causes sickle-cell disease 10 µm 10 µm Red blood cell shape Normal red blood cells are full of individual hemoglobin moledules, each carrying oxygen. Red blood cell shape Fibers of abnormal hemoglobin deform red blood cell into sickle shape.

10 µm 10 µm Normal red blood cells are full of individual hemoglobin Fig. 5-22c 10 µm 10 µm Normal red blood cells are full of individual hemoglobin molecules, each carrying oxygen. Fibers of abnormal hemoglobin deform red blood cell into sickle shape. Figure 5.22 A single amino acid substitution in a protein causes sickle-cell disease

A ribbon model of lysozyme A space-filling model of lysozyme Fig. 5-19 Groove Groove Figure 5.19 Structure of a protein, the enzyme lysozyme (a) A ribbon model of lysozyme (b) A space-filling model of lysozyme

Antibody protein Protein from flu virus Fig. 5-20 Antibody protein Protein from flu virus Figure 5.20 An antibody binding to a protein from a flu virus

Four Levels of Protein Structure The primary structure of a protein is its unique sequence of amino acids Secondary structure, found in most proteins, consists of coils and folds in the polypeptide chain Tertiary structure is determined by interactions among various side chains (R groups) Quaternary structure results when a protein consists of multiple polypeptide chains Animation: Protein Structure Introduction Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Figure 5.21 Levels of protein structure—primary structure Secondary Structure Tertiary Structure Quaternary Structure  pleated sheet +H3N Amino end Examples of amino acid subunits  helix Figure 5.21 Levels of protein structure—primary structure

Animation: Primary Protein Structure Primary structure, the sequence of amino acids in a protein, is like the order of letters in a long word Primary structure is determined by inherited genetic information Animation: Primary Protein Structure Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

+H3N Primary Structure Amino end Amino acid subunits 1 5 10 15 20 25 Fig. 5-21a Primary Structure 1 5 +H3N Amino end 10 Amino acid subunits 15 Figure 5.21 Levels of protein structure—primary structure 20 25

Animation: Secondary Protein Structure The coils and folds of secondary structure result from hydrogen bonds between repeating constituents of the polypeptide backbone Typical secondary structures are a coil called an  helix and a folded structure called a  pleated sheet For the Cell Biology Video An Idealized Alpha Helix: No Sidechains, go to Animation and Video Files. For the Cell Biology Video An Idealized Alpha Helix, go to Animation and Video Files. For the Cell Biology Video An Idealized Beta Pleated Sheet Cartoon, go to Animation and Video Files. For the Cell Biology Video An Idealized Beta Pleated Sheet, go to Animation and Video Files. Animation: Secondary Protein Structure Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Secondary Structure  pleated sheet Examples of amino acid subunits Fig. 5-21c Secondary Structure  pleated sheet Examples of amino acid subunits Figure 5.21 Levels of protein structure—secondary structure  helix

Abdominal glands of the spider secrete silk fibers Fig. 5-21d Abdominal glands of the spider secrete silk fibers made of a structural protein containing  pleated sheets. The radiating strands, made of dry silk fibers, maintain the shape of the web. Figure 5.21 Levels of protein structure—secondary structure The spiral strands (capture strands) are elastic, stretching in response to wind, rain, and the touch of insects.

Animation: Tertiary Protein Structure Tertiary structure is determined by interactions between R groups, rather than interactions between backbone constituents These interactions between R groups include hydrogen bonds, ionic bonds, hydrophobic interactions, and van der Waals interactions Strong covalent bonds called disulfide bridges may reinforce the protein’s structure Animation: Tertiary Protein Structure Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Tertiary Structure Quaternary Structure Fig. 5-21e Tertiary Structure Quaternary Structure Figure 5.21 Levels of protein structure—tertiary and quaternary structures

Polypeptide  Chains chain Iron Heme  Chains Hemoglobin Collagen Fig. 5-21g Polypeptide chain  Chains Iron Figure 5.21 Levels of protein structure—tertiary and quaternary structures Heme  Chains Hemoglobin Collagen

Animation: Quaternary Protein Structure Quaternary structure results when two or more polypeptide chains form one macromolecule Collagen is a fibrous protein consisting of three polypeptides coiled like a rope Hemoglobin is a globular protein consisting of four polypeptides: two alpha and two beta chains Animation: Quaternary Protein Structure Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

What Determines Protein Structure? In addition to primary structure, physical and chemical conditions can affect structure Alterations in pH, salt concentration, temperature, or other environmental factors can cause a protein to unravel This loss of a protein’s native structure is called denaturation A denatured protein is biologically inactive Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Denaturation Normal protein Denatured protein Renaturation Fig. 5-23 Figure 5.23 Denaturation and renaturation of a protein Normal protein Denatured protein Renaturation

Concept 5.5: Nucleic acids store and transmit hereditary information The amino acid sequence of a polypeptide is programmed by a unit of inheritance called a gene Genes are made of DNA, a nucleic acid Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

The Roles of Nucleic Acids There are two types of nucleic acids: Deoxyribonucleic acid (DNA) Ribonucleic acid (RNA) DNA provides directions for its own replication DNA directs synthesis of messenger RNA (mRNA) and, through mRNA, controls protein synthesis Protein synthesis occurs in ribosomes Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

DNA 1 Synthesis of mRNA in the nucleus mRNA NUCLEUS CYTOPLASM Fig. 5-26-1 DNA 1 Synthesis of mRNA in the nucleus mRNA NUCLEUS CYTOPLASM Figure 5.26 DNA → RNA → protein

DNA 1 Synthesis of mRNA in the nucleus mRNA NUCLEUS CYTOPLASM mRNA 2 Fig. 5-26-2 DNA 1 Synthesis of mRNA in the nucleus mRNA NUCLEUS CYTOPLASM mRNA 2 Movement of mRNA into cytoplasm via nuclear pore Figure 5.26 DNA → RNA → protein

DNA 1 Synthesis of mRNA in the nucleus mRNA NUCLEUS CYTOPLASM mRNA 2 Fig. 5-26-3 DNA 1 Synthesis of mRNA in the nucleus mRNA NUCLEUS CYTOPLASM mRNA 2 Movement of mRNA into cytoplasm via nuclear pore Ribosome Figure 5.26 DNA → RNA → protein 3 Synthesis of protein Amino acids Polypeptide

The Structure of Nucleic Acids Nucleic acids are polymers called polynucleotides Each polynucleotide is made of monomers called nucleotides Each nucleotide consists of a nitrogenous base, a pentose sugar, and a phosphate group Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

(a) Polynucleotide, or nucleic acid (c) Nucleoside components: sugars Fig. 5-27 5 end Nitrogenous bases Pyrimidines 5C 3C Nucleoside Nitrogenous base Cytosine (C) Thymine (T, in DNA) Uracil (U, in RNA) Purines Phosphate group Sugar (pentose) 5C Adenine (A) Guanine (G) 3C (b) Nucleotide Sugars 3 end Figure 5.27 Components of nucleic acids (a) Polynucleotide, or nucleic acid Deoxyribose (in DNA) Ribose (in RNA) (c) Nucleoside components: sugars

(c) Nucleoside components: nitrogenous bases Fig. 5-27c-1 Nitrogenous bases Pyrimidines Cytosine (C) Thymine (T, in DNA) Uracil (U, in RNA) Purines Figure 5.27 Components of nucleic acids Adenine (A) Guanine (G) (c) Nucleoside components: nitrogenous bases

(c) Nucleoside components: sugars Fig. 5-27c-2 Sugars Deoxyribose (in DNA) Ribose (in RNA) Figure 5.27 Components of nucleic acids (c) Nucleoside components: sugars

The DNA Double Helix A DNA molecule has two polynucleotides spiraling around an imaginary axis, forming a double helix In the DNA double helix, the two backbones run in opposite 5 → 3 directions from each other, an arrangement referred to as antiparallel One DNA molecule includes many genes The nitrogenous bases in DNA pair up and form hydrogen bonds: adenine (A) always with thymine (T), and guanine (G) always with cytosine (C) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Nitrogenous base Phosphate group Sugar (pentose) Fig. 5-27ab 5' end 5'C 3'C Nucleoside Nitrogenous base 5'C Phosphate group Figure 5.27 Components of nucleic acids 3'C Sugar (pentose) 5'C 3'C (b) Nucleotide 3' end (a) Polynucleotide, or nucleic acid

5' end 3' end Sugar-phosphate backbones Base pair (joined by Fig. 5-28 5' end 3' end Sugar-phosphate backbones Base pair (joined by hydrogen bonding) Old strands Nucleotide about to be added to a new strand 3' end Figure 5.28 The DNA double helix and its replication 5' end New strands 5' end 3' end 5' end 3' end

DNA and Proteins as Tape Measures of Evolution The linear sequences of nucleotides in DNA molecules are passed from parents to offspring Two closely related species are more similar in DNA than are more distantly related species Molecular biology can be used to assess evolutionary kinship Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

The Theme of Emergent Properties in the Chemistry of Life: A Review Higher levels of organization result in the emergence of new properties Organization is the key to the chemistry of life Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 5-UN2

Fig. 5-UN2a

Fig. 5-UN2b

100 % of glycosidic linkages broken 50 Time Fig. 5-UN3 100 % of glycosidic linkages broken 50 Time

Fig. 5-UN9

You should now be able to: List and describe the four major classes of molecules Describe the formation of a glycosidic linkage and distinguish between monosaccharides, disaccharides, and polysaccharides Distinguish between saturated and unsaturated fats and between cis and trans fat molecules Describe the four levels of protein structure Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

You should now be able to: Distinguish between the following pairs: pyrimidine and purine, nucleotide and nucleoside, ribose and deoxyribose, the 5 end and 3 end of a nucleotide Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings