STEREOPSIS The Stereopsis Problem: Fusion and Reconstruction

Slides:



Advertisements
Similar presentations
Stereo Vision Reading: Chapter 11
Advertisements

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923.
Gratuitous Picture US Naval Artillery Rangefinder from World War I (1918)!!
Stereo Many slides adapted from Steve Seitz. Binocular stereo Given a calibrated binocular stereo pair, fuse it to produce a depth image Where does the.
Stereo.
Last Time Pinhole camera model, projection
Stereo. STEREOPSIS Reading: Chapter 11. The Stereopsis Problem: Fusion and Reconstruction Human Stereopsis and Random Dot Stereograms Cooperative Algorithms.
Stereo and Epipolar geometry
Multiple View Geometry : Computational Photography Alexei Efros, CMU, Fall 2005 © Martin Quinn …with a lot of slides stolen from Steve Seitz and.
Multiple View Geometry & Stereo
Multi-view stereo Many slides adapted from S. Seitz.
Stereopsis Mark Twain at Pool Table", no date, UCR Museum of Photography.
The plan for today Camera matrix
CS 223b 1 More on stereo and correspondence. CS 223b 2 =?f g Mostpopular For each window, match to closest window on epipolar line in other image. (slides.
3D from multiple views : Rendering and Image Processing Alexei Efros …with a lot of slides stolen from Steve Seitz and Jianbo Shi.
May 2004Stereo1 Introduction to Computer Vision CS / ECE 181B Tuesday, May 11, 2004  Multiple view geometry and stereo  Handout #6 available (check with.
3D Vision and Graphics. The Geometry of Multiple Views Motion Field Stereo Epipolar Geometry The Essential Matrix The Fundamental Matrix Structure from.
CSE473/573 – Stereo Correspondence
Announcements PS3 Due Thursday PS4 Available today, due 4/17. Quiz 2 4/24.
Computer Vision Multiple View Geometry & Stereo Marc Pollefeys COMP 256.
Midterm went out on Tuesday (due next Tuesday) Project 3 out today Announcements.
Stereo Sebastian Thrun, Gary Bradski, Daniel Russakoff Stanford CS223B Computer Vision (with slides by James Rehg and.
COMP322/S2000/L271 Stereo Imaging Ref.V.S.Nalwa, A Guided Tour of Computer Vision, Addison Wesley, (ISBN ) Slides are adapted from CS641.
Multiple View Geometry : Computational Photography Alexei Efros, CMU, Fall 2006 © Martin Quinn …with a lot of slides stolen from Steve Seitz and.
Stereo matching “Stereo matching” is the correspondence problem –For a point in Image #1, where is the corresponding point in Image #2? C1C1 C2C2 ? ? C1C1.
Stereo matching Class 10 Read Chapter 7 Tsukuba dataset.
Project 4 Results Representation – SIFT and HoG are popular and successful. Data – Hugely varying results from hard mining. Learning – Non-linear classifier.
Review: Binocular stereo If necessary, rectify the two stereo images to transform epipolar lines into scanlines For each pixel x in the first image Find.
3-D Scene u u’u’ Study the mathematical relations between corresponding image points. “Corresponding” means originated from the same 3D point. Objective.
Computer Vision Spring ,-685 Instructor: S. Narasimhan WH 5409 T-R 10:30am – 11:50am Lecture #15.
Structure from images. Calibration Review: Pinhole Camera.
Lecture 12 Stereo Reconstruction II Lecture 12 Stereo Reconstruction II Mata kuliah: T Computer Vision Tahun: 2010.
Recap from Monday Image Warping – Coordinate transforms – Linear transforms expressed in matrix form – Inverse transforms useful when synthesizing images.
Stereo Vision Reading: Chapter 11 Stereo matching computes depth from two or more images Subproblems: –Calibrating camera positions. –Finding all corresponding.
Stereo Readings Szeliski, Chapter 11 (through 11.5) Single image stereogram, by Niklas EenNiklas Een.
Stereo Many slides adapted from Steve Seitz.
Binocular Stereo #1. Topics 1. Principle 2. binocular stereo basic equation 3. epipolar line 4. features and strategies for matching.
Project 2 code & artifact due Friday Midterm out tomorrow (check your ), due next Fri Announcements TexPoint fonts used in EMF. Read the TexPoint.
Stereo Many slides adapted from Steve Seitz. Binocular stereo Given a calibrated binocular stereo pair, fuse it to produce a depth image image 1image.
Computer Vision, Robert Pless
EECS 274 Computer Vision Stereopsis.
CSE 185 Introduction to Computer Vision Stereo. Taken at the same time or sequential in time stereo vision structure from motion optical flow Multiple.
Bahadir K. Gunturk1 Phase Correlation Bahadir K. Gunturk2 Phase Correlation Take cross correlation Take inverse Fourier transform  Location of the impulse.
stereo Outline : Remind class of 3d geometry Introduction
776 Computer Vision Jan-Michael Frahm Spring 2012.
Solving for Stereo Correspondence Many slides drawn from Lana Lazebnik, UIUC.
55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography.
Project 2 due today Project 3 out today Announcements TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAA.
Correspondence and Stereopsis Original notes by W. Correa. Figures from [Forsyth & Ponce] and [Trucco & Verri]
1 Computational Vision CSCI 363, Fall 2012 Lecture 16 Stereopsis.
Computational Vision CSCI 363, Fall 2012 Lecture 17 Stereopsis II
Correspondence and Stereopsis. Introduction Disparity – Informally: difference between two pictures – Allows us to gain a strong sense of depth Stereopsis.
Introduction à la vision artificielle VIII Jean Ponce Web:
CSE 185 Introduction to Computer Vision Stereo 2.
Stereo CS4670 / 5670: Computer Vision Noah Snavely Single image stereogram, by Niklas EenNiklas Een.
55:148 Digital Image Processing Chapter 11 3D Vision, Geometry
제 5 장 스테레오.
Computational Vision CSCI 363, Fall 2016 Lecture 15 Stereopsis
CS4670 / 5670: Computer Vision Kavita Bala Lec 27: Stereo.
STEREOPSIS The Stereopsis Problem: Fusion and Reconstruction
Geometry 3: Stereo Reconstruction
EECS 274 Computer Vision Stereopsis.
Announcements Midterms graded (handed back at end of lecture)
Thanks to Richard Szeliski and George Bebis for the use of some slides
What have we learned so far?
Binocular Stereo Vision
Course 6 Stereo.
Chapter 11: Stereopsis Stereopsis: Fusing the pictures taken by two cameras and exploiting the difference (or disparity) between them to obtain the depth.
Binocular Stereo Vision
Stereo vision Many slides adapted from Steve Seitz.
Presentation transcript:

STEREOPSIS The Stereopsis Problem: Fusion and Reconstruction Human Stereopsis and Random Dot Stereograms Cooperative Algorithms Correlation-Based Fusion Multi-Scale Edge Matching Dynamic Programming Using Three or More Cameras Reading: Chapter 11.

An Application: Mobile Robot Navigation The INRIA Mobile Robot, 1990. The Stanford Cart, H. Moravec, 1979. Courtesy O. Faugeras and H. Moravec.

Reconstruction / Triangulation

(Binocular) Fusion

Reconstruction Linear Method: find P such that Non-Linear Method: find Q minimizing

Rectification All epipolar lines are parallel in the rectified image plane.

Reconstruction from Rectified Images Disparity: d=u’-u. Depth: z = -B/d.

Stereopsis Figure from US Navy Manual of Basic Optics and Optical Instruments, prepared by Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969.

Human Stereopsis: Reconstruction d=0 Disparity: d = r-l = D-F. d<0 In 3D, the horopter.

Human Stereopsis: Reconstruction What if F is not known? Helmoltz (1909): There is evidence showing the vergence angles cannot be measured precisely. Humans get fooled by bas-relief sculptures. There is an analytical explanation for this. Relative depth can be judged accurately.

Human Stereopsis: Binocular Fusion How are the correspondences established? Julesz (1971): Is the mechanism for binocular fusion a monocular process or a binocular one?? There is anecdotal evidence for the latter (camouflage). Random dot stereograms provide an objective answer BP!

Correlation Methods (1970--) Slide the window along the epipolar line until w.w’ is maximized. 2 Minimize |w-w’|. Normalized Correlation: minimize q instead.

The Ordering Constraint In general the points are in the same order on both epipolar lines. But it is not always the case..

Dynamic Programming (Baker and Binford, 1981) Find the minimum-cost path going monotonically down and right from the top-left corner of the graph to its bottom-right corner. Nodes = matched feature points (e.g., edge points). Arcs = matched intervals along the epipolar lines. Arc cost = discrepancy between intervals.

Dynamic Programming (Ohta and Kanade, 1985) Reprinted from “Stereo by Intra- and Intet-Scanline Search,” by Y. Ohta and T. Kanade, IEEE Trans. on Pattern Analysis and Machine Intelligence, 7(2):139-154 (1985).  1985 IEEE.

Three Views The third eye can be used for verification..

More Views (Okutami and Kanade, 1993) Pick a reference image, and slide the corresponding window along the corresponding epipolar lines of all other images, using inverse depth relative to the first image as the search parameter. Reprinted from “A Multiple-Baseline Stereo System,” by M. Okutami and T. Kanade, IEEE Trans. on Pattern Analysis and Machine Intelligence, 15(4):353-363 (1993). \copyright 1993 IEEE. Use the sum of correlation scores to rank matches.

I1 I2 I10 Reprinted from “A Multiple-Baseline Stereo System,” by M. Okutami and T. Kanade, IEEE Trans. on Pattern Analysis and Machine Intelligence, 15(4):353-363 (1993). \copyright 1993 IEEE.