What is Bioinformatics?

Slides:



Advertisements
Similar presentations
Blast outputoutput. How to measure the similarity between two sequences Q: which one is a better match to the query ? Query: M A T W L Seq_A: M A T P.
Advertisements

1 Introduction to Sequence Analysis Utah State University – Spring 2012 STAT 5570: Statistical Bioinformatics Notes 6.1.
Alignment methods Introduction to global and local sequence alignment methods Global : Needleman-Wunch Local : Smith-Waterman Database Search BLAST FASTA.
Gapped Blast and PSI BLAST Basic Local Alignment Search Tool ~Sean Boyle Basic Local Alignment Search Tool ~Sean Boyle.
Measuring the degree of similarity: PAM and blosum Matrix
Lecture 8 Alignment of pairs of sequence Local and global alignment
1 (c) Mark Gerstein, 1999, Yale, bioinfo.mbb.yale.edu BIOINFORMATICS Introduction Mark Gerstein, Yale University bioinfo.mbb.yale.edu/mbb452a.
C E N T R F O R I N T E G R A T I V E B I O I N F O R M A T I C S V U E Alignments 1 Sequence Analysis.
Sequence Similarity Searching Class 4 March 2010.
Heuristic alignment algorithms and cost matrices
Alignment methods and database searching April 14, 2005 Quiz#1 today Learning objectives- Finish Dotter Program analysis. Understand how to use the program.
Introduction to bioinformatics
Sequence similarity.
Alignment methods June 26, 2007 Learning objectives- Understand how Global alignment program works. Understand how Local alignment program works.
Similar Sequence Similar Function Charles Yan Spring 2006.
Sequence Alignment III CIS 667 February 10, 2004.
1-month Practical Course Genome Analysis Lecture 3: Residue exchange matrices Centre for Integrative Bioinformatics VU (IBIVU) Vrije Universiteit Amsterdam.
BLOSUM Information Resources Algorithms in Computational Biology Spring 2006 Created by Itai Sharon.
Bioinformatics Unit 1: Data Bases and Alignments Lecture 3: “Homology” Searches and Sequence Alignments (cont.) The Mechanics of Alignments.
Alignment IV BLOSUM Matrices. 2 BLOSUM matrices Blocks Substitution Matrix. Scores for each position are obtained frequencies of substitutions in blocks.
Introduction to Bioinformatics From Pairwise to Multiple Alignment.
Alignment methods II April 24, 2007 Learning objectives- 1) Understand how Global alignment program works using the longest common subsequence method.
Basics of Sequence Alignment and Weight Matrices and DOT Plot
1 BLAST: Basic Local Alignment Search Tool Jonathan M. Urbach Bioinformatics Group Department of Molecular Biology.
Alignment Statistics and Substitution Matrices BMI/CS 576 Colin Dewey Fall 2010.
Cédric Notredame (30/08/2015) Chemoinformatics And Bioinformatics Cédric Notredame Molecular Biology Bioinformatics Chemoinformatics Chemistry.
An Introduction to Bioinformatics
Protein Sequence Alignment and Database Searching.
CISC667, S07, Lec5, Liao CISC 667 Intro to Bioinformatics (Spring 2007) Pairwise sequence alignment Needleman-Wunsch (global alignment)
Sequence analysis: Macromolecular motif recognition Sylvia Nagl.
Multiple Alignment and Phylogenetic Trees Csc 487/687 Computing for Bioinformatics.
Sequence Alignment Goal: line up two or more sequences An alignment of two amino acid sequences: …. Seq1: HKIYHLQSKVPTFVRMLAPEGALNIHEKAWNAYPYCRTVITN-EYMKEDFLIKIETWHKP.
Pairwise Sequence Alignment. The most important class of bioinformatics tools – pairwise alignment of DNA and protein seqs. alignment 1alignment 2 Seq.
Pairwise alignment of DNA/protein sequences I519 Introduction to Bioinformatics, Fall 2012.
Comp. Genomics Recitation 3 The statistics of database searching.
Construction of Substitution Matrices
Sequence Alignment Csc 487/687 Computing for bioinformatics.
Function preserves sequences Christophe Roos - MediCel ltd Similarity is a tool in understanding the information in a sequence.
BLAST: Basic Local Alignment Search Tool Altschul et al. J. Mol Bio CS 466 Saurabh Sinha.
BLAST Slides adapted & edited from a set by Cheryl A. Kerfeld (UC Berkeley/JGI) & Kathleen M. Scott (U South Florida) Kerfeld CA, Scott KM (2011) Using.
1 (c) Mark Gerstein, 1999, Yale, bioinfo.mbb.yale.edu BIOINFORMATICS Structures Mark Gerstein, Yale University bioinfo.mbb.yale.edu/mbb452a (last edit.
Biocomputation: Comparative Genomics Tanya Talkar Lolly Kruse Colleen O’Rourke.
Sequence Based Analysis Tutorial March 26, 2004 NIH Proteomics Workshop Lai-Su L. Yeh, Ph.D. Protein Science Team Lead Protein Information Resource at.
©CMBI 2005 Database Searching BLAST Database Searching Sequence Alignment Scoring Matrices Significance of an alignment BLAST, algorithm BLAST, parameters.
Pairwise sequence alignment Lecture 02. Overview  Sequence comparison lies at the heart of bioinformatics analysis.  It is the first step towards structural.
Sequence Alignment.
Construction of Substitution matrices
Step 3: Tools Database Searching
The statistics of pairwise alignment BMI/CS 576 Colin Dewey Fall 2015.
V diagonal lines give equivalent residues ILS TRIVHVNSILPSTN V I L S T R I V I L P E F S T Sequence A Sequence B Dot Plots, Path Matrices, Score Matrices.
V diagonal lines give equivalent residues ILS TRIVHVNSILPSTN V I L S T R I V I L P E F S T Sequence A Sequence B Dot Plots, Path Matrices, Score Matrices.
Techniques for Protein Sequence Alignment and Database Searching G P S Raghava Scientist & Head Bioinformatics Centre, Institute of Microbial Technology,
Substitution Matrices and Alignment Statistics BMI/CS 776 Mark Craven February 2002.
9/6/07BCB 444/544 F07 ISU Dobbs - Lab 3 - BLAST1 BCB 444/544 Lab 3 BLAST Scoring Matrices & Alignment Statistics Sept6.
Pairwise Sequence Alignment and Database Searching
Sequence similarity, BLAST alignments & multiple sequence alignments
LSM3241: Bioinformatics and Biocomputing Lecture 4: Sequence analysis methods revisited Prof. Chen Yu Zong Tel:
Bioinformatics Methods for Inheriting Structural and Functional annotations for Gene Sequences if a related sequence has a known function can you inherit.
Sequence Based Analysis Tutorial
Large-Scale Genomic Surveys
Sequence Based Analysis Tutorial
BIOINFORMATICS Introduction
BIOINFORMATICS Summary
BIOINFORMATICS Sequence Comparison
Alignment IV BLOSUM Matrices
Basic Local Alignment Search Tool
BLAST Slides adapted & edited from a set by
BLAST Slides adapted & edited from a set by
Presentation transcript:

What is Bioinformatics? (Molecular) Bio - informatics One idea for a definition? Bioinformatics is conceptualizing biology in terms of molecules (in the sense of physical-chemistry) and then applying “informatics” techniques (derived from disciplines such as applied math, CS, and statistics) to understand and organize the information associated with these molecules, on a large-scale. Bioinformatics is a practical discipline with many applications.

Large-Scale Genomic Surveys Bioinformatics Subtopics Secondary Structure Prediction Fold Recognition Homology Modeling Docking & Drug Design E-literature Function Class- ification Sequence Alignment Expression Clustering Protein Geometry Database Design Gene Prediction Large-Scale Genomic Surveys Protein Flexibility Structure Classification Genome Annotation

General Types of “Informatics” techniques in Bioinformatics Databases Building, Querying Data Dictionaries Object Oriented DB Google Text String Comparison Text Search 1D Alignment Significance Statistics, E_val Alta Vista, grep Finding Patterns AI / Machine Learning Clustering Datamining Graph Theory, Networks Constraint Propagation Geometry Robotics Graphics (Surfaces, Volumes) Comparison and 3D Matching Docking Physical Simulation Newtonian Mechanics Electrostatics Numerical Algorithms Simulation Statistics Traditional tests Inferential, Bayesian Information retrieval

Some Specific “Informatics” tools of Bioinformatics Databases NCBI GenBank- Protein and DNA sequence NCBI Human Map - Human Genome Viewer NCBI Ensembl - Genome browsers for human, mouse, zebra fish, mosquito TIGR - The Institute for Genome Research SwissProt - Protein Sequence and Function ProDom - Protein Domains Pfam - Protein domain families ProSite - Protein Sequence Motifs Protein Data Base (PDB) - Coordinates for Protein 3D structures SCOP Database- Domain structures organized into evolutionary families HSSP - Domain database using Dali FlyBase WormBase PubMed / MedLine Sequence Alignment Tools BLAST Clustal FASTA PSI-Blast Hidden Markov Models 3D Structure Alignments / Classifications Dali VAST PRISM CATH SCOP

Aligning Text Strings 4 matches, 1 insertion Raw Data ??? T C A T G C A T T G 2 matches, 0 gaps T C A T G | | C A T T G 3 matches (2 end gaps) T C A T G . | | | . C A T T G 4 matches, 1 insertion T C A - T G | | | | . C A T T G T C A T - G | | | | . C A T T G

Sequence Alignment E-value: Expect Value Each sequence alignment has a “bit score” or “similarity score” (S), a measure of the similarity between the hit and the query; normalized for “effective length" The E-value of the hit is the number of alignments in the database you are searching with similarity score ≥ S that you expect to find by chance; liklihood of the match relative to a pair of random sequences with the same amino acid composition E = 10-50. Much more likely than a random occurrence E = 10-5. This could be an accidental event E = 1. It is easy to find another hit in the database that is as The lower the Expect Value (E_val), the more significant the “hit”

E-value Expect Value Depends on: Similarity Score (Bit Score): Higher similarity score (% seq id) corresponds to smaller E-value Length of the query: Since a particular Similarity Score is more easily obtained by chance with a longer query sequence, longer queries correspond to larger E-values Size of the database: Since a larger database makes a particular Similarity Score easier to obtain, a larger database results in larger E-values

Calculating E-val: Raw Score: calculated by counting the number of identities, mismatches, gaps, etc in the alignment Bit Score: Normalizes the “raw score” to provide a measure of sequence similarity that is independent of the scoring system E-value: E = mn2-S where m - “effective length of the query” (accounts for the fact that ends may not line up); n - length of the database (number of residues or bases) S - Bit score

Blast against Structural Genomic Target Registry (TargetDB) or against latest PDB or PDB-on-hold listings

The Score S = Total Score S(i,j) = similarity matrix score for aligning i and j Sum is carried out over all aligned i and j n = number of gaps (assuming no gap ext. penalty) G = gap penalty Simplest score (for identity matrix) is S = # matches What does a Score of 10 mean? What is the Right Cutoff?

Basic Concepts of Sequence Alignment Basic Alignment via Dynamic Programming Suboptimal Alignment Gap Penalties Similarity (PAM) Matrices Multiple Alignment Profiles, Motifs, HMMs Global vs Local Alignment

Molecular Biology Information: Protein Sequence 20 letter alphabet ACDEFGHIKLMNPQRSTVWY but not BJOUXZ Strings of ~300 aa in an average protein (in bacteria), ~200 aa in a domain ~200 K known protein sequences d1dhfa_ LNCIVAVSQNMGIGKNGDLPWPPLRNEFRYFQRMTTTSSVEGKQ-NLVIMGKKTWFSI d8dfr__ LNSIVAVCQNMGIGKDGNLPWPPLRNEYKYFQRMTSTSHVEGKQ-NAVIMGKKTWFSI d4dfra_ ISLIAALAVDRVIGMENAMPWN-LPADLAWFKRNTL--------NKPVIMGRHTWESI d3dfr__ TAFLWAQDRDGLIGKDGHLPWH-LPDDLHYFRAQTV--------GKIMVVGRRTYESF d4dfra_ ISLIAALAVDRVIGMENAMPW-NLPADLAWFKRNTLD--------KPVIMGRHTWESI d3dfr__ TAFLWAQDRNGLIGKDGHLPW-HLPDDLHYFRAQTVG--------KIMVVGRRTYESF d1dhfa_ VPEKNRPLKGRINLVLSRELKEPPQGAHFLSRSLDDALKLTEQPELANKVDMVWIVGGSSVYKEAMNHP d8dfr__ VPEKNRPLKDRINIVLSRELKEAPKGAHYLSKSLDDALALLDSPELKSKVDMVWIVGGTAVYKAAMEKP d4dfra_ ---G-RPLPGRKNIILS-SQPGTDDRV-TWVKSVDEAIAACGDVP------EIMVIGGGRVYEQFLPKA d3dfr__ ---PKRPLPERTNVVLTHQEDYQAQGA-VVVHDVAAVFAYAKQHLDQ----ELVIAGGAQIFTAFKDDV d1dhfa_ -PEKNRPLKGRINLVLSRELKEPPQGAHFLSRSLDDALKLTEQPELANKVDMVWIVGGSSVYKEAMNHP d8dfr__ -PEKNRPLKDRINIVLSRELKEAPKGAHYLSKSLDDALALLDSPELKSKVDMVWIVGGTAVYKAAMEKP d4dfra_ -G---RPLPGRKNIILSSSQPGTDDRV-TWVKSVDEAIAACGDVPE-----.IMVIGGGRVYEQFLPKA d3dfr__ -P--KRPLPERTNVVLTHQEDYQAQGA-VVVHDVAAVFAYAKQHLD----QELVIAGGAQIFTAFKDDV

Aligning Text Strings Raw Data ??? T C A T G C A T T G 2 matches, 0 gaps T C A T G | | C A T T G 3 matches (2 end gaps) T C A T G . | | | . C A T T G 4 matches, 1 insertion T C A - T G | | | | . C A T T G T C A T - G | | | | . C A T T G

Dynamic Programming What to do for Bigger String? SSDSEREEHVKRFRQALDDTGMKVPMATTNLFTHPVFKDGGFTANDRDVRRYALRKTIRNIDLAVELGAETYVAWGGREGAESGGAKDVRDALDRMKEAFDLLGEYVTSQGYDIRFAIEP KPNEPRGDILLPTVGHALAFIERLERPELYGVNPEVGHEQMAGLNFPHGIAQALWAGKLFHIDLNGQNGIKYDQDLRFGAGDLRAAFWLVDLLESAGYSGPRHFDFKPPRTEDFDGVWAS Needleman-Wunsch (1970) provided first automatic method Dynamic Programming to Find Global Alignment Their Test Data (J->Y) ABCNYRQCLCRPM AYCYNRCKCRBP

Step 1 -- Make a Dot Plot (Similarity Matrix) Put 1's where characters are identical.

A More Interesting Dot Matrix (adapted from R Altman)

Step 2 -- Start Computing the Sum Matrix new_value_cell(R,C) <= cell(R,C) { Old value, either 1 or 0 } + Max[ cell (R+1, C+1), { Diagonally Down, no gaps } cells(R+1, C+2 to C_max),{ Down a row, making col. gap } cells(R+2 to R_max, C+1) { Down a col., making row gap } ]

Step 3 -- Keep Going

Step 4 -- Sum Matrix All Done Alignment Score is 8 matches.

Step 5 -- Traceback Find Best Score (8) and Trace Back A B C N Y - R Q C L C R - P M A Y C - Y N R - C K C R B P

Step 6 -- Alternate Tracebacks A B C - N Y R Q C L C R - P M A Y C Y N - R - C K C R B P Also, Suboptimal Aligments

Gap Penalties GAP = a + bN The score at a position can also factor in a penalty for introducing gaps (i. e., not going from i, j to i- 1, j- 1). Gap penalties are often of linear form: GAP = a + bN GAP is the gap penalty a = cost of opening a gap b = cost of extending the gap by one (affine) N = length of the gap (Here assume b=0, a=1/2, so GAP = 1/2 regardless of length.)

Step 2 -- Computing the Sum Matrix with Gaps new_value_cell(R,C) <= cell(R,C) { Old value, either 1 or 0 } + Max[ cell (R+1, C+1), { Diagonally Down, no gaps } cells(R+1, C+2 to C_max) - GAP ,{ Down a row, making col. gap } cells(R+2 to R_max, C+1) - GAP { Down a col., making row gap } ] GAP =1/2 1.5

Key Idea in Dynamic Programming The best alignment that ends at a given pair of positions (i and j) in the 2 sequences is the score of the best alignment previous to this position PLUS the score for aligning those two positions. An Example Below Aligning R to K does not affect alignment of previous N-terminal residues. Once this is done it is fixed. Then go on to align D to E. How could this be violated? Aligning R to K changes best alignment in box. ACSQRP--LRV-SH RSENCV A-SNKPQLVKLMTH VKDFCV ACSQRP--LRV-SH -R SENCV A-SNKPQLVKLMTH VK DFCV

Substitution Matrices Count number of amino acid identities (or non-identities) Count the minimum number of mutations in the DNA needed to account for the non-identical pairs Provide some measure of similarity based on frequency of mutations observed in homologous protein sequences

Similarity (Substitution) Matrix A R N D C Q E G H I L K M F P S T W Y V A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 C 0 -3 -3 -3 8 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 H -2 0 1 -1 -3 0 0 -2 7 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2 M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1 F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 6 -1 -1 -4 -3 -2 S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0 W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 10 2 -3 Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 6 -1 V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 Identity Matrix Match L with L => 1 Match L with D => 0 Match L with V => 0?? S(aa-1,aa-2) Match L with L => 1 Match L with D => 0 Match L with V => .5 Number of Common Ones PAM Blossum Gonnet

Where do matrices come from? + —> More likely than random 0 —> At random base rate - —> Less likely than random Where do matrices come from? Manually align protein structures (or, more risky, sequences) 2 Look at frequency of a.a. substitutions at structurally constant sites. -- i.e. pair i-j exchanges 3 Compute log-odds S(aa-1,aa-2) = log2 ( freq(O) / freq(E) ) O = observed exchanges, E = expected exchanges odds = freq(observed) / freq(expected) Sij = log odds freq(expected) = f(i)*f(j) = is the chance of getting amino acid i in a column and then having it change to j e.g. A-R pair observed only a tenth as often as expected 90% AAVLL… AAVQI… AVVQL… ASVLL… 45%

Amino Acid Frequencies of Occurrence          1978        1991 L       0.085       0.091 A       0.087       0.077 G       0.089       0.074 S       0.070       0.069 V       0.065       0.066 E       0.050       0.062 T       0.058       0.059 K       0.081       0.059 I       0.037       0.053 D       0.047       0.052 R       0.041       0.051 P       0.051       0.051 N       0.040       0.043 Q       0.038       0.041 F       0.040       0.040 Y       0.030       0.032 M       0.015       0.024 H       0.034       0.023 C       0.033       0.020 W       0.010       0.014 Amino Acid Frequencies of Occurrence

Relationship of type of substitution to closeness in identity of the sequences in the training alignment

Different Matrices are Appropriate at Different Evolutionary Distances (Adapted from D Brutlag, Stanford)

Change in Matrix with Ev. Dist. PAM-250 (distant) Change in Matrix with Ev. Dist. PAM-78 (Adapted from D Brutlag, Stanford)

- Simplest way: the identity matrix - A very crude model : to use the genetic code matrix, the number of point mutations necessary to transform one codon into the other. Other similarity scoring matrices might be constructed from any property of amino acids that can be quantified -partition coefficients between hydrophobic and hydrophilic phases -charge -molecular volume, etc.   Unfortunately, all these biophysical quantities suffer from the fact that they provide only a partial view of the picture - there is no guarantee, that any particular property  is a good predictor for conservation of amino acids between related proteins. Other Matrices: How to score the exchange of two amino acids in an alignment? (graphic adapted from W Taylor)

The BLOSUM Matrices BLOSUM62 is the BLAST default Some concepts challenged: Are the evolutionary rates uniform over the whole of the protein sequence? (No.)  The BLOSUM matrices: Henikoff & Henikoff (Henikoff, S. & Henikoff J.G. (1992) PNAS 89:10915-10919) . Use blocks of  sequence fragments from different protein families which can be aligned without the introduction of gaps. Amino acid pair frequencies can be compiled from these blocks Different evolutionary distances are incorporated into this scheme with a clustering procedure: two sequences that are identical to each other for more than a certain threshold of positions are clustered. More sequences are added to the cluster if they are identical to any sequence already in the cluster at the same level. All sequences within a cluster are then simply averaged. (A consequence of this clustering is that the contribution of closely related sequences to the frequency table is reduced, if the identity requirement is reduced. ) This leads to a series of matrices, analogous to the PAM series of matrices. BLOSUM80: derived at the 80% identity level. The BLOSUM Matrices BLOSUM62 is the BLAST default